On a generalization of Szemeredi's theorem

被引:26
|
作者
Shkredov, I. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
关键词
D O I
10.1017/S0024611506015991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $N$ be a natural number and $A \subseteq [1, \dots, N]/\2$ be a set of cardinality at least $N/\2 / (\log \log N)/\c$, where $c > 0$ is an absolute constant. We prove that $A$ contains a triple $\{(k, m), (k+d, m), (k, m+d) \}$, where $d > 0$. This theorem is a two-dimensional generalization of Szemerédi's theorem on arithmetic progressions. © 2006 London Mathematical Society.
引用
收藏
页码:723 / 760
页数:38
相关论文
共 50 条
  • [41] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176
  • [42] A generalization of Cobham's theorem
    Durand, F
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [43] Generalization of Obata's theorem
    J Geom Anal, 3 (357-375):
  • [44] On a generalization of Jentzsch's theorem
    Blatt, Hans-Peter
    Blatt, Simon
    Luh, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 26 - 38
  • [45] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [46] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [47] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [48] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [49] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375
  • [50] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242