On a generalization of Szemeredi's theorem

被引:26
|
作者
Shkredov, I. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
关键词
D O I
10.1017/S0024611506015991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $N$ be a natural number and $A \subseteq [1, \dots, N]/\2$ be a set of cardinality at least $N/\2 / (\log \log N)/\c$, where $c > 0$ is an absolute constant. We prove that $A$ contains a triple $\{(k, m), (k+d, m), (k, m+d) \}$, where $d > 0$. This theorem is a two-dimensional generalization of Szemerédi's theorem on arithmetic progressions. © 2006 London Mathematical Society.
引用
收藏
页码:723 / 760
页数:38
相关论文
共 50 条