Embeddings of Lipschitz-free spaces into l1

被引:11
|
作者
Aliaga, Ramon J. [1 ]
Petitjean, Colin [2 ]
Prochazka, Antonin [3 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA,UPEM, F-77447 Marne La Vallee, France
[3] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Extreme point; Lipschitz-free space; Lipschitz homeomorphism; R-tree; SUBSPACES;
D O I
10.1016/j.jfa.2020.108916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for a separable and complete metric space M, the Lipschitz-free space F(M) embeds linearly and almost-isometrically into l(1) if and only if M is a subset of an R-tree with length measure 0. Moreover, it embeds isometrically if and only if the length measure of the closure of the set of branching points of M(taken in any minimal R-tree that contains M) is also 0. We also prove that, for subspaces of L-1 spaces, every extreme point of the unit ball is preserved; as a consequence we obtain a complete characterization of extreme points of the unit ball of F(M) when M is a subset of an R-tree. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l∞ INTO THEIR DUALS
    Cuth, Marek
    Johanis, Michal
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3409 - 3421
  • [2] ON LARGE l1-SUMS OF LIPSCHITZ-FREE SPACES AND APPLICATIONS
    Candido, Leondro
    Guzman, Hector H. T.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1135 - 1145
  • [3] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [4] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [5] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [6] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [7] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [8] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907
  • [9] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646
  • [10] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    [J]. Mathematische Annalen, 2024, 388 : 1053 - 1090