ON LARGE l1-SUMS OF LIPSCHITZ-FREE SPACES AND APPLICATIONS
被引:0
|
作者:
Candido, Leondro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
Candido, Leondro
[1
]
Guzman, Hector H. T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
Guzman, Hector H. T.
[1
]
机构:
[1] Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
Lipschitz -free spaces;
spaces of Lipschitz functions;
spaces of contin;
BANACH-SPACES;
D O I:
10.1090/proc/16206
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
. We prove that the Lipschitz-free space over a Banach space X of density kappa, denoted by F(X), is linearly isomorphic to its l(1)-sum (circle plus k F(X)).e1. This provides an extension of a previous result from Kaufmann in the context of non-separable Banach spaces. Further, we obtain a complete classification of the spaces of real-valued Lipschitz functions that vanish at 0 over a Lp-space. More precisely, we establish that, for every 1 <= p <= infinity, if X is a Lp-space of density kappa, then Lip(0)(X) is either isomorphic to Lip(0)(lp(kappa)) if p < infinity, or Lip(0)(c(0)(kappa)) if p = infinity.
机构:
Univ Fed Sao Paulo, Inst Ciencia Tecnol, BR-12247016 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia Tecnol, BR-12247016 Sao Jose Dos Campos, SP, Brazil