Visual clustering of complex network based on nonlinear dimension reduction

被引:0
|
作者
Li, Jianyu [1 ]
Yang, Shuzhong [2 ]
机构
[1] Commun Univ China, Sch Comp & Software, Beijing 100024, Peoples R China
[2] Beijing Jiaotong Univ, Sch Comp & Informat Teclmol, Beijing 100044, Peoples R China
来源
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
complex network; visual clustering; Isomap; graph distance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new visual clustering algorithm inspired by nonlinear dimension reduction technique: Isomap. The algorithm firstly defines a new graph distance between any two nodes in complex networks and then applies the distance matrix to Isomap and projects all nodes into a two dimensional plane, The experiments prove that the projected nodes emerge clear clustering property which is hidden in original complex networks and the distances between any two nodes reflect their close or distant relationships.
引用
收藏
页码:555 / +
页数:2
相关论文
共 50 条
  • [21] A Nonlinear Approach to Dimension Reduction
    Gottlieb, Lee-Ad
    Krauthgamer, Robert
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (02) : 291 - 315
  • [22] A Graph Form Data Stream Clustering Approach Based on Dimension Reduction
    Makul, Ozge
    Ekinci, Murat
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [23] Nonlinear Dimension Reduction using ISOMap based on Class Information
    Cho, Minkook
    Park, Hyeyoung
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2830 - 2834
  • [24] Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes
    Cannistraci, Carlo Vittorio
    Ravasi, Timothy
    Montevecchi, Franco Maria
    Ideker, Trey
    Alessio, Massimo
    [J]. BIOINFORMATICS, 2010, 26 (18) : i531 - i539
  • [25] Nonlinear dimensionality reduction for clustering
    Tasoulis, Sotiris
    Pavlidis, Nicos G.
    Roos, Teemu
    [J]. PATTERN RECOGNITION, 2020, 107 (107)
  • [26] Comparing dimension reduction techniques for document clustering
    Tang, B
    Shepherd, M
    Heywood, MI
    Luo, X
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3501 : 292 - 296
  • [27] On dimension reduction of clustering results in structural bioinformatics
    Ivan, Gabor
    Grolmusz, Vince
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (12): : 2277 - 2283
  • [28] Simultaneous Interaction with Dimension Reduction and Clustering Projections
    Wenskovitch, John
    Dowling, Michelle
    North, Chris
    [J]. PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES: COMPANION (IUI 2019), 2019, : 89 - 90
  • [29] Document representation and dimension reduction for text clustering
    Shafiei, Mahdi
    Wang, Singer
    Zhang, Roger
    Milios, Evangelos
    Tang, Bin
    Tougas, Jane
    Spiteri, Ray
    [J]. 2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, VOLS 1-2, 2007, : 770 - 779
  • [30] On Joint Dimension Reduction and Clustering of Categorical Data
    D'Enza, Alfonso Iodice
    Van de Velden, Michel
    Palumbo, Francesco
    [J]. ANALYSIS AND MODELING OF COMPLEX DATA IN BEHAVIORAL AND SOCIAL SCIENCES, 2014, : 161 - 169