Simultaneous Interaction with Dimension Reduction and Clustering Projections

被引:1
|
作者
Wenskovitch, John [1 ]
Dowling, Michelle [1 ]
North, Chris [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
关键词
Dimension reduction; clustering; interaction; visual analytics;
D O I
10.1145/3308557.3308718
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Direct manipulation interactions on projections are often incorporated in visual analytics applications. These interactions enable analysts to provide feedback to the system, demonstrating relationships that the analyst wishes to find within the projection. However, determining the precise intent of the analyst is a challenge; when an analyst interacts with a projection, the system could infer a variety of possible interpretations. In this work, we explore interaction design considerations for the simultaneous use of dimension reduction and clustering algorithms to address this challenge.
引用
收藏
页码:89 / 90
页数:2
相关论文
共 50 条
  • [1] Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction
    Deng, Kai
    Zhang, Xin
    [J]. BIOMETRICS, 2022, 78 (03) : 1067 - 1079
  • [2] Simultaneous dimension reduction and clustering via the NMF-EM algorithm
    Léna Carel
    Pierre Alquier
    [J]. Advances in Data Analysis and Classification, 2021, 15 : 231 - 260
  • [3] Simultaneous dimension reduction and clustering via the NMF-EM algorithm
    Carel, Lena
    Alquier, Pierre
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (01) : 231 - 260
  • [4] Visualization of multi-neuron activity by simultaneous optimization of clustering and dimension reduction
    Matsumoto, Narihisa
    Akaho, Shotaro
    Sugase-Miyamoto, Yasuko
    Okada, Masato
    [J]. NEURAL NETWORKS, 2010, 23 (06) : 743 - 751
  • [5] Knowledge Driven Dimension Reduction For Clustering
    Davidson, Ian
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1034 - 1039
  • [6] Clustering and dimension reduction for mixed variables
    Vichi M.
    Vicari D.
    Kiers H.A.L.
    [J]. Behaviormetrika, 2019, 46 (2) : 243 - 269
  • [7] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [8] Multiview Dimension Reduction Based on Sparsity Preserving Projections
    Li, Haohao
    Cai, Yu
    Zhao, Guohui
    Lin, Hu
    Su, Zhixun
    Liu, Ximin
    [J]. IMAGE AND VIDEO TECHNOLOGY (PSIVT 2019), 2019, 11854 : 296 - 309
  • [9] Comparing dimension reduction techniques for document clustering
    Tang, B
    Shepherd, M
    Heywood, MI
    Luo, X
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3501 : 292 - 296
  • [10] On dimension reduction of clustering results in structural bioinformatics
    Ivan, Gabor
    Grolmusz, Vince
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (12): : 2277 - 2283