Simultaneous Interaction with Dimension Reduction and Clustering Projections

被引:1
|
作者
Wenskovitch, John [1 ]
Dowling, Michelle [1 ]
North, Chris [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
关键词
Dimension reduction; clustering; interaction; visual analytics;
D O I
10.1145/3308557.3308718
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Direct manipulation interactions on projections are often incorporated in visual analytics applications. These interactions enable analysts to provide feedback to the system, demonstrating relationships that the analyst wishes to find within the projection. However, determining the precise intent of the analyst is a challenge; when an analyst interacts with a projection, the system could infer a variety of possible interpretations. In this work, we explore interaction design considerations for the simultaneous use of dimension reduction and clustering algorithms to address this challenge.
引用
收藏
页码:89 / 90
页数:2
相关论文
共 50 条
  • [31] Hybrid Neural Networks for Dimension Reduction and Clustering of Multidimensional Data
    Zin, Zalhan Mohd
    Yusof, Rubiyah
    Mesbahi, Ehsan
    [J]. 2016 2ND INTERNATIONAL SYMPOSIUM ON AGENT, MULTI-AGENT SYSTEMS AND ROBOTICS (ISAMSR), 2016, : 100 - 105
  • [32] Bayesian Clustering of Animal Abundance Trends for Inference and Dimension Reduction
    Johnson, Devin S.
    Ream, Rolf R.
    Towell, Rod G.
    Williams, Michael T.
    Guerrero, Juan D. Leon
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (03) : 299 - 313
  • [33] Dimension reduction for clustering time series using global characteristics
    Wang, XZ
    Smith, KA
    Hyndman, RJ
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 792 - 795
  • [34] Increasing Efficiency of Time Series Clustering by Dimension Reduction Techniques
    Bahadori, Saeid
    Charkari, Nasrollah Moghadam
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (05): : 164 - 170
  • [35] Visual clustering of complex network based on nonlinear dimension reduction
    Li, Jianyu
    Yang, Shuzhong
    [J]. INTELLIGENT INFORMATION PROCESSING III, 2006, 228 : 555 - +
  • [36] Bayesian Clustering of Animal Abundance Trends for Inference and Dimension Reduction
    Devin S. Johnson
    Rolf R. Ream
    Rod G. Towell
    Michael T. Williams
    Juan D. Leon Guerrero
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 299 - 313
  • [37] Groupwise sufficient dimension reduction via conditional distance clustering
    Xinyi Xu
    Jingxiao Zhang
    [J]. Metrika, 2020, 83 : 217 - 242
  • [38] Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R
    Markos, Angelos
    D'Enza, Alfonso Iodice
    van de Velden, Michel
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (10):
  • [39] Block Analysis in Bitcoin System Using Clustering with Dimension Reduction
    Shin, Mu-Gon
    Baek, Ui-Jun
    Shim, Kyu-Seok
    Park, Jee-Tae
    Yoon, Sung-Ho
    Kim, Myung-Sup
    [J]. 2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [40] NMF based Dimension Reduction Methods for Turkish Text Clustering
    Guran, Aysun
    Ganiz, Murat Can
    Naiboglu, Hamit Selahattin
    Kaptikacti, Halil Oguz
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,