UNIFORM STABILITY AND ERROR ANALYSIS FOR SOME DISCONTINUOUS GALERKIN METHODS

被引:5
|
作者
Hong, Qingguo [1 ]
Xu, Jinchao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 02期
关键词
Uniform Stability; Uniform Error Estimate; Hybrid Discontinuous Galerkin; Weak Galerkin; FINITE-ELEMENT-METHOD;
D O I
10.4208/jcm.2003-m2018-0223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin (HDG) and weak Galerkin (WG) methods. By using the standard Brezzi theory on mixed methods, we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters. As a result, by taking appropriate limit of the stabilization parameters, we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.
引用
收藏
页码:283 / 310
页数:28
相关论文
共 50 条
  • [21] Global error analysis of discontinuous Galerkin methods for systems of boundary value problems
    Temimi, Helmi
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04): : 368 - 380
  • [22] Uniform stability of spectral nonlinear Galerkin methods
    He, YN
    Li, KT
    Zhao, CS
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 723 - 741
  • [23] L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods
    Liu, Yingjie
    Shu, Chi-Wang
    Tadmor, Eitan
    Zhang, Mengping
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (04): : 593 - 607
  • [24] Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: Stability and energy error estimates
    Larson, MG
    Niklasson, AJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 252 - 264
  • [25] A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem
    Gudi, Thirupathi
    Porwal, Kamana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 257 - 278
  • [26] Stability of Discontinuous Galerkin Methods for Volterra Integral Equations
    Wen, Jiao
    Li, Min
    Guan, Hongbo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5972 - 5986
  • [27] Energy norm a posteriori error estimation for discontinuous Galerkin methods
    Becker, R
    Hansbo, P
    Larson, MG
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) : 723 - 733
  • [28] A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Virtanen, Juha M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 427 - 458
  • [29] A posteriori error estimates for discontinuous Galerkin methods of obstacle problems
    Wang, Fei
    Han, Weimin
    Eichholz, Joseph
    Cheng, Xiaoliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 664 - 679
  • [30] Discontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis
    Georgoulis, Emmanuil H.
    Hall, Edward
    Houston, Paul
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) : 221 - 244