UNIFORM STABILITY AND ERROR ANALYSIS FOR SOME DISCONTINUOUS GALERKIN METHODS

被引:5
|
作者
Hong, Qingguo [1 ]
Xu, Jinchao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 02期
关键词
Uniform Stability; Uniform Error Estimate; Hybrid Discontinuous Galerkin; Weak Galerkin; FINITE-ELEMENT-METHOD;
D O I
10.4208/jcm.2003-m2018-0223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin (HDG) and weak Galerkin (WG) methods. By using the standard Brezzi theory on mixed methods, we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters. As a result, by taking appropriate limit of the stabilization parameters, we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.
引用
收藏
页码:283 / 310
页数:28
相关论文
共 50 条
  • [41] An analysis of discontinuous Galerkin methods for elliptic problems
    Schneider, Reinhold
    Xu, Yuesheng
    Zhou, Aihui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 259 - 286
  • [42] Fourier analysis for discontinuous Galerkin and related methods
    Zhang MengPing
    Shu Chi-Wang
    CHINESE SCIENCE BULLETIN, 2009, 54 (11): : 1809 - 1816
  • [43] On discontinuous Galerkin methods
    Zienkiewicz, OC
    Taylor, RL
    Sherwin, SJ
    Peiró, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) : 1119 - 1148
  • [44] hp-discontinuous Galerkin finite element methods for hyperbolic problems:: error analysis and adaptivity
    Houston, P
    Senior, B
    Süli, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (1-2) : 153 - 169
  • [45] Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity
    Georgoulis, Emmanuil H.
    Hall, Edward
    Houston, Paul
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (09) : 2179 - 2194
  • [46] ERROR ANALYSIS OF TREFFTZ-DISCONTINUOUS GALERKIN METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS
    Hiptmair, Ralf
    Moiola, Andrea
    Perugia, Ilaria
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 247 - 268
  • [47] A POSTERIORI ERROR CONTROL OF DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC OBSTACLE PROBLEMS
    Gudi, Thirupathi
    Porwal, Kamana
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 579 - 602
  • [48] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635
  • [49] Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation
    Han, Weimin
    He, Limin
    Wang, Fei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 121 - 144
  • [50] Part III Discontinuous Galerkin Methods: General Approach and Stability
    Shu, Chi-Wang
    NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, : 149 - +