A posteriori error estimates for discontinuous Galerkin methods of obstacle problems

被引:25
|
作者
Wang, Fei [1 ,2 ]
Han, Weimin [3 ,4 ]
Eichholz, Joseph [5 ]
Cheng, Xiaoliang [6 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[5] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[6] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic variational inequality; Discontinuous Galerkin method; A posteriori error estimate; Residual-type error estimator;
D O I
10.1016/j.nonrwa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:664 / 679
页数:16
相关论文
共 50 条