On the symmetric doubly stochastic inverse eigenvalue problem

被引:18
|
作者
Lei, Ying-Jie [1 ]
Xu, Wei-Ru [1 ]
Lu, Yong [1 ]
Niu, Yan-Ru [1 ]
Gu, Xian-Ming [2 ]
机构
[1] North Univ China, Sch Sci, Taiyuan 030051, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse eigenvalue problem; Symmetric doubly stochastic matrix; Symmetric positive doubly; stochastic matrix; Sufficient condition; Convexity; NONNEGATIVE MATRICES; SPECTRUM;
D O I
10.1016/j.laa.2013.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = (1, lambda(2), ... , lambda(n)) be a list of real numbers. The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the list sigma which can occur as the spectrum of an n x n symmetric doubly stochastic matrix A. If the matrix A is positive, we can necessarily obtain a subproblem, symmetric positive doubly stochastic inverse eigenvalue problem (hereafter SPDIEP), of the SDIEP. In this paper, we give some sufficient conditions for the SDIEP and SPDIEP and prove that the set formed by the spectra of all n x n symmetric positive doubly stochastic matrices is non-convex for n >= 4. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:181 / 205
页数:25
相关论文
共 50 条
  • [41] Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalue Problem
    Ellard, Richard
    Smigoc, Helena
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 : 521 - 552
  • [42] A map of sufficient conditions for the symmetric nonnegative inverse eigenvalue problem
    Marijuan, C.
    Pisonero, M.
    Soto, Ricardo L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 344 - 365
  • [43] An inverse eigenvalue problem for doubly periodic pseudo-Jacobi matrices
    Xu, Wei-Ru
    Bebiano, Natalia
    Chen, Guo-Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405
  • [44] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Meixiang Chen
    Zhifeng Weng
    Computational and Applied Mathematics, 2021, 40
  • [45] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Chen, Meixiang
    Weng, Zhifeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [46] A note on the real inverse spectral problem for doubly stochastic matrices
    Nader, Rafic
    Mourad, Bassam
    Bretto, Alain
    Abbas, Hassan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 (206-240) : 206 - 240
  • [47] Inverse Eigenvalue Problem for Real Symmetric Seven-Diagonal Matrix
    Zhao Xin-xin
    Li Zhi-bin
    ADVANCING KNOWLEDGE DISCOVERY AND DATA MINING TECHNOLOGIES, PROCEEDINGS, 2009, : 72 - 77
  • [48] Inverse Eigenvalue Problem for Real Symmetric Five-Diagonal Matrix
    Feng, Lichao
    Li, Ping
    Gong, Dianxuan
    Li, Linfan
    Yang, Aimin
    Qu, Jingguo
    INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2010, 106 : 275 - +
  • [49] An inverse eigenvalue problem for symmetric Arrow-plus-Jacobi matrices
    College of Science, Jiujiang University, Jiujiang, China
    不详
    Proc. - Int. Conf. Comput. Inf. Sci., ICCIS, (764-766):
  • [50] Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices
    Trench, WF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1722 - 1736