Inverse Eigenvalue Problem for Real Symmetric Seven-Diagonal Matrix

被引:0
|
作者
Zhao Xin-xin [1 ]
Li Zhi-bin [1 ]
机构
[1] Dalian Jiaotong Univ, Coll Math & Phys, Dalian 116028, Peoples R China
关键词
Real symmetric seven-diagonal matrix; Inverse problems; Jacobi matrix;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the following inverse eigenvalue problem for real symmetric five-diagonal matrix: Question 1 Given real numbers lambda(1), lambda(2), lambda(3) (lambda(1) > lambda(2) > lambda(3)), nonzero vectors x, y, z is an element of R(n). Find n x n real symmetric seven-diagonal matrix A such that Ax = lambda(1)x, Ay = lambda(2)y, Az = lambda(3)z. Question 2 Given real numbers lambda(1), lambda(2), lambda(3) (lambda(1) > lambda(2) > lambda(3)), nonero vectors x, y, z is an element of R(n) and real numbers d(1), d(2), ..., d(n-3). Find n x n real symmetric seven-diagonal matrix T such that Tx = lambda(1)x, Ty = lambda(2)y, Tz = lambda(3)z, and d(1), d(2), ..., d(n-3) is the third minor diahonal. The expression of the solution of the problem is given, and a numerical example is provided.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [1] Inverse Eigenpair Problem for Real Symmetric Seven-Diagonal Matrix
    Feng, Lichao
    Li, Ping
    Yang, Aimin
    Peng, Yamian
    Yan, Shaohong
    Wang, Ling
    PROCEEDINGS OF ANNUAL CONFERENCE OF CHINA INSTITUTE OF COMMUNICATIONS, 2010, : 137 - +
  • [2] Inverse Eigenpair Problem for Real Symmetric Seven-Diagonal Positive Definite Matrix
    Feng Lichao
    Jin Dianchuan
    Wu Zhihui
    Yang Yanmei
    Song Shaopeng
    Zhang Qiuna
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 59 - +
  • [3] Inverse Eigenvalue Problem for Real Symmetric Five-Diagonal Matrix
    Feng, Lichao
    Li, Ping
    Gong, Dianxuan
    Li, Linfan
    Yang, Aimin
    Qu, Jingguo
    INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2010, 106 : 275 - +
  • [4] The Inverse Eigenvalue Problem for the Real Non-symmetric Bordered Diagonal Matrices
    Zhang, Jin
    Chen, Xiao-Juan
    Si, Cheng-Hai
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 437 - 440
  • [5] On the inverse eigenvalue problem for a specific symmetric matrix
    Zarch, Maryam Babaei
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (03): : 479 - 489
  • [6] Inverse properties of a class of seven-diagonal (near) Toeplitz matrices
    Kurmanbek, Bakytzhan
    Erlangga, Yogi
    Amanbek, Yerlan
    SPECIAL MATRICES, 2022, 10 (01): : 67 - 86
  • [7] VECTORIZED STRONGLY IMPLICIT SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX
    Leister, H. -J.
    Peric, M.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1994, 4 (01) : 159 - 172
  • [8] Vectorized strongly implicit solving procedure for a seven-diagonal coefficient matrix
    Leister, H.-J.
    Peric, M.
    International Journal of Numerical Methods for Heat and Fluid Flow, 1994, 4 (02): : 159 - 172
  • [9] Real symmetric five-diagonal matrix and inverse eigenproblems for it
    Zhou, Xiaozhuang
    Hu, Xiyan
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 1996, 23 (01):
  • [10] Has the Function Relationship of the Four Diagonal Matrix Inverse Eigenvalue Problem of the Algorithm
    Wang, Yun-fei
    Li, Zhi-bin
    INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND CIVIL ENGINEERING, MSCE 2016, 2016, : 369 - 374