Inverse Eigenvalue Problem for Real Symmetric Seven-Diagonal Matrix

被引:0
|
作者
Zhao Xin-xin [1 ]
Li Zhi-bin [1 ]
机构
[1] Dalian Jiaotong Univ, Coll Math & Phys, Dalian 116028, Peoples R China
关键词
Real symmetric seven-diagonal matrix; Inverse problems; Jacobi matrix;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the following inverse eigenvalue problem for real symmetric five-diagonal matrix: Question 1 Given real numbers lambda(1), lambda(2), lambda(3) (lambda(1) > lambda(2) > lambda(3)), nonzero vectors x, y, z is an element of R(n). Find n x n real symmetric seven-diagonal matrix A such that Ax = lambda(1)x, Ay = lambda(2)y, Az = lambda(3)z. Question 2 Given real numbers lambda(1), lambda(2), lambda(3) (lambda(1) > lambda(2) > lambda(3)), nonero vectors x, y, z is an element of R(n) and real numbers d(1), d(2), ..., d(n-3). Find n x n real symmetric seven-diagonal matrix T such that Tx = lambda(1)x, Ty = lambda(2)y, Tz = lambda(3)z, and d(1), d(2), ..., d(n-3) is the third minor diahonal. The expression of the solution of the problem is given, and a numerical example is provided.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [31] A Test Matrix for an Inverse Eigenvalue Problem
    Gladwell, G. M. L.
    Jones, T. H.
    Willms, N. B.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [32] An inverse eigenvalue problem for Jacobi matrix
    Wei, Ying
    Dai, Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 633 - 642
  • [33] Inverse eigenvalue problem for Jacobi matrix
    Feng, Lichao
    Yan, Shaohong
    He, Yali
    Yang, Yanmei
    Li, Ping
    International Journal of Digital Content Technology and its Applications, 2012, 6 (16) : 395 - 402
  • [34] ON THE REAL SYMMETRICAL INVERSE EIGENVALUE PROBLEM
    SHALABY, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 56 (03) : 331 - 340
  • [35] DIAGONAL ELEMENTS AND EIGENVALUES OF A REAL SYMMETRIC MATRIX
    CHAN, NN
    LI, KH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (02) : 562 - 566
  • [36] Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form
    Barrera, M.
    Grudsky, S.
    Stukopin, V.
    Voronin, I.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (04)
  • [37] AN ORTHOGONALITY PROPERTY FOR REAL SYMMETRIC MATRIX POLYNOMIALS WITH APPLICATION TO THE INVERSE PROBLEM
    Lancaster, Peter
    Prells, Uwe
    Zaballa, Ion
    OPERATORS AND MATRICES, 2013, 7 (02): : 357 - 379
  • [38] On the equiconvergence problem for matrix differential operators with diagonal-matrix eigenvalue
    Dyadechko, AV
    DIFFERENTIAL EQUATIONS, 1996, 32 (02) : 163 - 172
  • [39] The real and the symmetric nonnegative inverse eigenvalue problems are different
    Johnson, CR
    Laffey, TJ
    Loewy, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) : 3647 - 3651
  • [40] On Hankel matrices and the symmetric nonnegative inverse eigenvalue problem
    Julio, Ana, I
    Diaz, Roberto C.
    Herrera, Timoteo
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (03): : 474 - 487