A map of sufficient conditions for the symmetric nonnegative inverse eigenvalue problem

被引:9
|
作者
Marijuan, C. [1 ]
Pisonero, M. [2 ]
Soto, Ricardo L. [3 ]
机构
[1] EI Informat, Dept Matemat Aplicada, Paseo de Belen 15, Valladolid 47011, Spain
[2] ETS Arquitectura, Dept Matemat Aplicada, Ave Salamanca 18, Valladolid 47014, Spain
[3] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
Symmetric nonnegative inverse; eigenvalue problem; Sufficient conditions; Nonnegative matrices; MATRICES; REAL; COMPENSATION; CONSTRUCTION; REALIZATION; SPECTRUM;
D O I
10.1016/j.laa.2017.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetric nonnegative inverse eigenvalue problem (SNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a symmetric nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. In this paper, in order to construct a map of sufficient conditions, we compare these conditions and establish inclusion relations or independence relations between them. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 365
页数:22
相关论文
共 50 条