A map of sufficient conditions for the symmetric nonnegative inverse eigenvalue problem

被引:9
|
作者
Marijuan, C. [1 ]
Pisonero, M. [2 ]
Soto, Ricardo L. [3 ]
机构
[1] EI Informat, Dept Matemat Aplicada, Paseo de Belen 15, Valladolid 47011, Spain
[2] ETS Arquitectura, Dept Matemat Aplicada, Ave Salamanca 18, Valladolid 47014, Spain
[3] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
Symmetric nonnegative inverse; eigenvalue problem; Sufficient conditions; Nonnegative matrices; MATRICES; REAL; COMPENSATION; CONSTRUCTION; REALIZATION; SPECTRUM;
D O I
10.1016/j.laa.2017.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetric nonnegative inverse eigenvalue problem (SNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a symmetric nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. In this paper, in order to construct a map of sufficient conditions, we compare these conditions and establish inclusion relations or independence relations between them. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 365
页数:22
相关论文
共 50 条
  • [21] On sufficient and necessary conditions for the Jacobi matrix inverse eigenvalue problem
    Linzhang Lu
    Michael K. Ng
    Numerische Mathematik, 2004, 98 : 167 - 176
  • [22] The real and the symmetric nonnegative inverse eigenvalue problems are different
    Johnson, CR
    Laffey, TJ
    Loewy, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) : 3647 - 3651
  • [23] Ruling out certain 5-spectra for the symmetric nonnegative inverse eigenvalue problem
    Johnson, C. R.
    Marijuan, C.
    Pisonero, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 129 - 135
  • [24] Realizable regions for the symmetric nonnegative inverse eigenvalue problem for 6 x 6 matrices
    Alanazi, Faizah D.
    McDonald, Judi J.
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (13): : 2104 - 2122
  • [25] Persymmetric and bisymmetric nonnegative inverse eigenvalue problem
    Julio, Ana I.
    Soto, Ricardo L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 130 - 152
  • [26] Negativity compensation in the nonnegative inverse eigenvalue problem
    Borobia, A
    Moro, J
    Soto, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 (1-3) : 73 - 89
  • [27] On a classic example in the nonnegative inverse eigenvalue problem
    Laffey, Thomas J.
    Smigoc, Helena
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17 : 333 - 342
  • [28] Inverse Eigenvalue Problem of Bisymmetric Nonnegative Matrices
    Nazari, A. M.
    Aslami, P.
    Nezami, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (08)
  • [29] Construction of nonnegative matrices and the inverse eigenvalue problem
    Smigoc, H
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (02): : 85 - 96
  • [30] A NOTE ON THE REAL NONNEGATIVE INVERSE EIGENVALUE PROBLEM
    Loewy, Raphael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 765 - 773