Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater

被引:13
|
作者
Lokutsievskiy, L., V [1 ]
Sachkov, Yu L. [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Russian Acad Sci, Program Syst Inst, Pereslavl Dist, Yaroslavl Oblas, Russia
基金
俄罗斯科学基金会;
关键词
sub-Riemannian geometry; Liouville integrability; Carnot groups; growth vector; separatrix splitting; Melnikov-Poincare method; GENERALIZED DIDO PROBLEM; EQUATIONS; INTEGRALS; GEOMETRY; SYSTEMS; SPACE;
D O I
10.1070/SM8886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the main approaches to investigating sub-Riemannian problems is Mitchell's theorem on nilpotent approximation, which reduces the analysis of a neighbourhood of a regular point to the analysis of the left-invariant sub-Riemannian problem on the corresponding Carnot group. Usually, the in-depth investigation of sub-Riemannian shortest paths is based on integrating the Hamiltonian system of Pontryagin's maximum principle explicitly. We give new formulae for sub-Riemannian geodesics on a Carnot group with growth vector (2, 3, 5, 6) and prove that left-invariant sub-Riemannian problems on free Carnot groups of step 4 or greater are Liouville nonintegrable.
引用
收藏
页码:672 / 713
页数:42
相关论文
共 50 条
  • [21] A SUB-RIEMANNIAN MAXIMUM PRINCIPLE AND ITS APPLICATION TO THE p-LAPLACIAN IN CARNOT GROUPS
    Bieske, Thomas
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 119 - 134
  • [22] Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Warhurst, Ben
    [J]. ADVANCES IN MATHEMATICS, 2009, 220 (02) : 560 - 619
  • [23] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [24] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [25] On Integrability of Certain Rank 2 Sub-Riemannian Structures
    Kruglikov, Boris S.
    Vollmer, Andreas
    Lukes-Gerakopoulos, Georgios
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (05): : 502 - 519
  • [26] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 502 - 519
  • [27] Polynomial Sub-Riemannian Differentiability on Carnot–Carathéodory Spaces
    M. B. Karmanova
    [J]. Siberian Mathematical Journal, 2018, 59 : 860 - 869
  • [28] SUB-RIEMANNIAN STRUCTURES ON GROUPS OF DIFFEOMORPHISMS
    Arguillere, Sylvain
    Trelat, Emmanuel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) : 745 - 785
  • [29] Integrability conditions on a sub-Riemannian structure on S3
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (01) : 9 - 18
  • [30] k-Step Sub-Riemannian Manifold whose Sub-Riemannian Metric Admits a Canonical Extension to a Riemannian Metric
    M. M. Diniz
    J. M. M. Veloso
    [J]. Journal of Dynamical and Control Systems, 2010, 16 : 517 - 538