On Local Region Models and a Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional

被引:95
|
作者
Brox, Thomas [1 ]
Cremers, Daniel [1 ]
机构
[1] Univ Bonn, Comp Vis Grp, D-53117 Bonn, Germany
关键词
Segmentation; Variational methods; Statistical methods; Regularization; IMAGE SEGMENTATION; ACTIVE CONTOURS; CURVE EVOLUTION; ALGORITHMS; FRAMEWORK; TEXTURE; VISION; MOTION; SNAKES;
D O I
10.1007/s11263-008-0153-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mumford-Shah functional is a general and quite popular variational model for image segmentation. In particular, it provides the possibility to represent regions by smooth approximations. In this paper, we derive a statistical interpretation of the full (piecewise smooth) Mumford-Shah functional by relating it to recent works on local region statistics. Moreover, we show that this statistical interpretation comes along with several implications. Firstly, one can derive extended versions of the Mumford-Shah functional including more general distribution models. Secondly, it leads to faster implementations. Finally, thanks to the analytical expression of the smooth approximation via Gaussian convolution, the coordinate descent can be replaced by a true gradient descent.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [41] Finite-differences discretizations of the Mumford-Shah functional
    Chambolle, A
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (02): : 261 - 288
  • [42] A Fast Anisotropic Mumford-Shah Functional Based Segmentation
    Garamendi, J. F.
    Malpica, N.
    Schiavi, E.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2009, 5524 : 322 - 329
  • [43] Regularizing properties of the Mumford-Shah functional for imaging applications
    Jiang, Ming
    Maass, Peter
    Page, Thomas
    INVERSE PROBLEMS, 2014, 30 (03)
  • [44] Classification of small structures in piecewise-constant Mumford-Shah model
    Wang, Hong-Yuan
    Chen, Fuhua
    Brum, Alexis
    Shi, Cheng-Xian
    NEUROCOMPUTING, 2017, 269 : 132 - 141
  • [45] An approximation result for the minimizers of the Mumford-Shah functional.
    Dibos, F
    Sere, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11A (01): : 149 - 162
  • [46] A second order minimality condition for the Mumford-Shah functional
    Cagnetti, F.
    Mora, M. G.
    Morini, M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) : 37 - 74
  • [47] A second order minimality condition for the Mumford-Shah functional
    F. Cagnetti
    M. G. Mora
    M. Morini
    Calculus of Variations and Partial Differential Equations, 2008, 33 : 37 - 74
  • [48] Solving Higher-Order Mumford-Shah Models
    Storath, Martin
    Weinmann, Andreas
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [49] Combinatorial Optimization of the Discretized Multiphase Mumford-Shah Functional
    El-Zehiry, Noha Youssry
    Grady, Leo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (03) : 270 - 285