A second order minimality condition for the Mumford-Shah functional

被引:22
|
作者
Cagnetti, F. [1 ]
Mora, M. G. [1 ]
Morini, M. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1007/s00526-007-0152-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new necessary minimality condition for the Mumford-Shah functional is derived by means of second order variations. It is expressed in terms of a sign condition for a nonlocal quadratic form on H(0)(1)(Gamma), Gamma being a submanifold of the regular part of the discontinuity set of the critical point. Two equivalent formulations are provided: one in terms of the first eigenvalue of a suitable compact operator, the other involving a sort of nonlocal capacity of Gamma. A sufficient condition for minimality is also deduced. Finally, an explicit example is discussed, where a complete characterization of the domains where the second variation is nonnegative can be given.
引用
收藏
页码:37 / 74
页数:38
相关论文
共 50 条
  • [1] A second order minimality condition for the Mumford-Shah functional
    F. Cagnetti
    M. G. Mora
    M. Morini
    [J]. Calculus of Variations and Partial Differential Equations, 2008, 33 : 37 - 74
  • [3] LOCAL MINIMALITY RESULTS FOR THE MUMFORD-SHAH FUNCTIONAL VIA MONOTONICITY
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    [J]. ANALYSIS & PDE, 2020, 13 (03): : 865 - 899
  • [4] SECOND ORDER MUMFORD-SHAH MODEL FOR IMAGE DENOISING
    Duan, Jinming
    Ding, Yuchun
    Pan, Zhenkuan
    Yang, Jie
    Bai, Li
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 547 - 551
  • [5] On the Γ-limit of the Mumford-Shah functional
    Rieger, MO
    Tilli, P
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (04) : 373 - 390
  • [6] The calibration method for the Mumford-Shah functional
    Alberti, G
    Bouchitté, G
    Dal Maso, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03): : 249 - 254
  • [7] An Algorithm for Minimizing the Mumford-Shah Functional
    Pock, Thomas
    Cremers, Daniel
    Bischof, Horst
    Chambolle, Antonin
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1133 - 1140
  • [8] Numerical minimization of the Mumford-Shah functional
    Negri, M
    Paolini, M
    [J]. CALCOLO, 2001, 38 (02) : 67 - 84
  • [9] Open questions on the Mumford-Shah functional
    David, G
    [J]. PERSPECTIVES IN ANALYSIS: ESSAYS IN HONOR OF LENNART CARLESON'S 75TH BIRTHDAY, 2005, 27 : 37 - 49