A second order minimality condition for the Mumford-Shah functional

被引:22
|
作者
Cagnetti, F. [1 ]
Mora, M. G. [1 ]
Morini, M. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1007/s00526-007-0152-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new necessary minimality condition for the Mumford-Shah functional is derived by means of second order variations. It is expressed in terms of a sign condition for a nonlocal quadratic form on H(0)(1)(Gamma), Gamma being a submanifold of the regular part of the discontinuity set of the critical point. Two equivalent formulations are provided: one in terms of the first eigenvalue of a suitable compact operator, the other involving a sort of nonlocal capacity of Gamma. A sufficient condition for minimality is also deduced. Finally, an explicit example is discussed, where a complete characterization of the domains where the second variation is nonnegative can be given.
引用
收藏
页码:37 / 74
页数:38
相关论文
共 50 条
  • [21] On a notion of unilateral slope for the Mumford-Shah functional
    Dal Maso, Gianni
    Toader, Rodica
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6): : 713 - 734
  • [22] Solving Higher-Order Mumford-Shah Models
    Storath, Martin
    Weinmann, Andreas
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [23] Spatio-temporal Segmentation with Mumford-Shah Functional
    El Aallaoui, Mohamed
    Gourch, Abdelwahad
    2013 ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2013,
  • [24] New second order Mumford-Shah model based on Γ-convergence approximation for image processing
    Duan, Jinming
    Lu, Wenqi
    Pan, Zhenkuan
    Bai, Li
    INFRARED PHYSICS & TECHNOLOGY, 2016, 76 : 641 - 647
  • [25] Discrete approximation of the Mumford-Shah functional in dimension two
    Chambolle, A
    Dal Mas, G
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (04): : 651 - 672
  • [26] Non-local approximation of the Mumford-Shah functional
    A. Braides
    G. Dal Maso
    Calculus of Variations and Partial Differential Equations, 1997, 5 : 293 - 322
  • [27] Finite-differences discretizations of the Mumford-Shah functional
    Chambolle, A
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (02): : 261 - 288
  • [28] On the statistical interpretation of the piecewise smooth Mumford-Shah functional
    Brox, Thomas
    Cremers, Daniel
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2007, 4485 : 203 - +
  • [29] A Fast Anisotropic Mumford-Shah Functional Based Segmentation
    Garamendi, J. F.
    Malpica, N.
    Schiavi, E.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2009, 5524 : 322 - 329
  • [30] Non-local approximation of the Mumford-Shah functional
    Braides, A
    Maso, GD
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (04) : 293 - 322