On Local Region Models and a Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional

被引:95
|
作者
Brox, Thomas [1 ]
Cremers, Daniel [1 ]
机构
[1] Univ Bonn, Comp Vis Grp, D-53117 Bonn, Germany
关键词
Segmentation; Variational methods; Statistical methods; Regularization; IMAGE SEGMENTATION; ACTIVE CONTOURS; CURVE EVOLUTION; ALGORITHMS; FRAMEWORK; TEXTURE; VISION; MOTION; SNAKES;
D O I
10.1007/s11263-008-0153-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mumford-Shah functional is a general and quite popular variational model for image segmentation. In particular, it provides the possibility to represent regions by smooth approximations. In this paper, we derive a statistical interpretation of the full (piecewise smooth) Mumford-Shah functional by relating it to recent works on local region statistics. Moreover, we show that this statistical interpretation comes along with several implications. Firstly, one can derive extended versions of the Mumford-Shah functional including more general distribution models. Secondly, it leads to faster implementations. Finally, thanks to the analytical expression of the smooth approximation via Gaussian convolution, the coordinate descent can be replaced by a true gradient descent.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [21] Diffusion snakes:: Introducing statistical shape knowledge into the Mumford-Shah functional
    Cremers, D
    Tischhäuser, F
    Weickert, J
    Schnörr, C
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 50 (03) : 295 - 313
  • [22] Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional
    Daniel Cremers
    Florian Tischhäuser
    Joachim Weickert
    Christoph Schnörr
    International Journal of Computer Vision, 2002, 50 : 295 - 313
  • [23] Stable regular critical points of the Mumford-Shah functional are local minimizers
    Bonacini, M.
    Morini, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (03): : 533 - 570
  • [24] Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set
    Mora, MG
    Morini, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04): : 403 - 436
  • [26] Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets
    Dal Maso, G
    Mora, MG
    Morini, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (02): : 141 - 162
  • [27] Higher Integrability for Minimizers of the Mumford-Shah Functional
    De Philippis, Guido
    Figalli, Alessio
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) : 491 - 502
  • [28] Singular Sets of Minimizers for the Mumford-Shah Functional
    Radulescu, Vicentiu
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (01): : 124 - 125
  • [29] A Convex Representation for the Vectorial Mumford-Shah Functional
    Strekalovskiy, Evgeny
    Chambolle, Antonin
    Cremers, Daniel
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1712 - 1719
  • [30] On the Homogeneity of Global Minimizers for the Mumford-Shah Functional when K is a Smooth Cone
    Lemenant, Antoine
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 122 : 129 - 159