Planar 4-critical graphs with four triangles

被引:13
|
作者
Borodin, Oleg V. [1 ,2 ]
Dvorak, Zdenek [3 ]
Kostochka, Alexandr V. [1 ,4 ]
Lidicky, Bernard [4 ]
Yancey, Matthew [4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Charles Univ Prague, Inst Comp Sci, Prague, Czech Republic
[4] Univ Illinois, Urbana, IL 61801 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.ejc.2014.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the Grunbaum-Aksenov Theorem (extending Grotzsch's Theorem) every planar graph with at most three triangles is 3-colorable. However, there are infinitely many planar 4-critical graphs with exactly four triangles. We describe all such graphs. This answers a question of Erdos from 1990. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:138 / 151
页数:14
相关论文
共 50 条
  • [41] Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable
    Kim, Seog-Jin
    Yu, Xiaowei
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 707 - 718
  • [42] Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable
    Seog-Jin Kim
    Xiaowei Yu
    Graphs and Combinatorics, 2019, 35 : 707 - 718
  • [43] FINE STRUCTURE OF 4-CRITICAL TRIANGLE-FREE GRAPHS III. GENERAL SURFACES
    Dvorak, Zdenek
    Lidicky, Bernard
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 94 - 105
  • [44] Total colorings of planar graphs without adjacent triangles
    Sun, Xiang-Yong
    Wu, Jian-Liang
    Wu, Yu-Wen
    Hou, Han-Feng
    DISCRETE MATHEMATICS, 2009, 309 (01) : 202 - 206
  • [45] Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4-critical graphs
    Dvorak, Zdenek
    Kral', Daniel
    Thomas, Robin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 150 : 270 - 304
  • [46] 6-regular 4-critical graph
    Pyatkin, AV
    JOURNAL OF GRAPH THEORY, 2002, 41 (04) : 286 - 291
  • [47] Planar graphs with no incident triangles and no 4- or 5-cycles are (7 : 2)-colorable
    Rolek, Martin
    Scemama, Paul
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2025, 91 : 32 - 40
  • [48] 2-Distance coloring of planar graphs without triangles and intersecting 4-cycles
    Bu, Yuehua
    Zhang, Zewei
    Zhu, Hongguo
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [49] Vertex-arboricity of planar graphs without intersecting triangles
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 905 - 923
  • [50] On acyclic edge coloring of planar graphs without intersecting triangles
    Sheng, Ping
    Wang, Yingqian
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2490 - 2495