Vertex-arboricity of planar graphs without intersecting triangles

被引:34
|
作者
Chen, Min [1 ,2 ]
Raspaud, Andre [2 ]
Wang, Weifan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Univ Bordeaux 1, LaBRI UMR CNRS 5800, F-33405 Talence, France
关键词
POINT-ARBORICITY; LINEAR ARBORICITY; ACYCLIC COLORINGS;
D O I
10.1016/j.ejc.2011.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The vertex-arboricity a(G) of a graph G is the minimum number of subsets into which vertex set V(G) can be partitioned so that each subset induces an acyclic graph. In this paper, we prove one of the conjectures proposed by Raspaud and Wang (2008)[15] which says that a(G) = 2 for any planar graph without intersecting triangles. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:905 / 923
页数:19
相关论文
共 50 条
  • [1] List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles
    Wang, Wei-fan
    Huang, Li
    Chen, Min
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 439 - 447
  • [2] List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles
    Wei-fan WANG
    Li HUANG
    Min CHEN
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 439 - 447
  • [3] List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles
    Wei-fan Wang
    Li Huang
    Min Chen
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 439 - 447
  • [4] On the vertex-arboricity of planar graphs without 7-cycles
    Huang, Danjun
    Shiu, Wai Chee
    Wang, Weifan
    [J]. DISCRETE MATHEMATICS, 2012, 312 (15) : 2304 - 2315
  • [5] On the vertex-arboricity of planar
    Raspaud, Andre
    Wang, Weifan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1064 - 1075
  • [6] Vertex arboricity of planar graphs without intersecting 5-cycles
    Hua Cai
    Jianliang Wu
    Lin Sun
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 365 - 372
  • [7] Vertex arboricity of planar graphs without intersecting 5-cycles
    Cai, Hua
    Wu, Jianliang
    Sun, Lin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 365 - 372
  • [8] A note on the list vertex-arboricity of IC-planar graphs
    Wang, Yang
    Wang, Yiqiao
    Wang, Weifan
    Zheng, Lina
    [J]. DISCRETE MATHEMATICS, 2024, 347 (07)
  • [9] ON THE LINEAR VERTEX-ARBORICITY OF A PLANAR GRAPH
    POH, KS
    [J]. JOURNAL OF GRAPH THEORY, 1990, 14 (01) : 73 - 75
  • [10] ON LINEAR VERTEX-ARBORICITY OF COMPLEMENTARY GRAPHS
    ALAVI, Y
    LIU, JQ
    WANG, JF
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (03) : 315 - 322