0.13μm CMOS technology with optimized poly-Si/NO-oxide gate stack.

被引:0
|
作者
Kubicek, S [1 ]
Jansen, P [1 ]
Badenes, G [1 ]
Schaekers, M [1 ]
Koldyaev, V [1 ]
Deferm, L [1 ]
De Meyer, K [1 ]
机构
[1] IMEC, B-3001 Heverlee, Belgium
来源
ULSI PROCESS INTEGRATION | 1999年 / 99卷 / 18期
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A 0.13 mu m CMOS technology with an optimized poly-Si / NO-oxide gate stack is presented. Trade-off's between NO-oxide and pure SiO2 and between B and BF2 as HDD dopants are analyzed. The effect of various NO-oxides on nMOS and pMOS transistor characteristics is clearly demonstrated and explained. It is shown that careful optimization of the channel, S/D extensions and HALO's provides efficient SCE (short channel effect) suppression down to 0.13 mu m poly lengths (as measured by SEM after the dry poly etch). Flat V-T=f(L-poly) characteristics with drive currents of 630 mu A/mu m and 330 mu A/mu m (off state currents less than 1nA/mu m) measured at V-DD=1.5V for nMOS and pMOS respectively are achieved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [1] Gate oxide breakdown characterization on 0.13μm CMOS technology
    Faure, D
    Bru, D
    Ali, C
    Giret, C
    Christensen, K
    MICROELECTRONICS RELIABILITY, 2003, 43 (9-11) : 1519 - 1523
  • [2] The fabrication and dry etching of poly-Si/TaN/Mo gate stack in the metal inserted poly-Si stack structure
    Li, Yongliang
    Xu, Qiuxia
    MICROELECTRONIC ENGINEERING, 2011, 88 (06) : 976 - 980
  • [3] Effects of poly-Si annealing on gate oxide charging damage in poly-Si gate etching process
    Chong, D
    Yoo, WJ
    Chan, L
    See, A
    SILICON MATERIALS-PROCESSING, CHARACTERIZATION AND RELIABILITY, 2002, 716 : 197 - 202
  • [4] Hot carrier reliability for 0.13μm CMOS technology with dual gate oxide thickness
    Lin, C
    Biesemans, S
    Han, LK
    Houlihan, K
    Schiml, T
    Schruefer, K
    Wann, C
    Chen, J
    Mahnkopf, R
    INTERNATIONAL ELECTRON DEVICES MEETING 2000, TECHNICAL DIGEST, 2000, : 135 - 138
  • [5] Performance improvement of CMOS device utilizing poly-Si/HfSiON gate stack and its reliability concern for 65 nm technology and beyond
    Kimizuka, N.
    Yasuda, Y.
    Abe, T.
    Fujieda, S.
    Iwamoto, T.
    Yamamoto, I.
    Takano, K.
    Akiyama, Y.
    Tsuneki, K.
    Imai, K.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (06) : 860 - 869
  • [6] Enhanced stability of Ni monosilicide on MOSFETs poly-Si gate stack
    Lee, PS
    Mangelinck, D
    Pey, KL
    Ding, J
    Chi, DZ
    Osipowicz, T
    Dai, JY
    See, A
    MICROELECTRONIC ENGINEERING, 2002, 60 (1-2) : 171 - 181
  • [7] Dielectric breakdown characteristics of poly-Si/HfAlOx/SiON gate stack
    Torii, K
    Ohji, H
    Mutoh, A
    Kawahara, T
    Mitsuhashi, R
    Horiuchi, A
    Miyazaki, S
    Kitajima, H
    INTEGRATION OF ADVANCED MICRO-AND NANOELECTRONIC DEVICES-CRITICAL ISSUES AND SOLUTIONS, 2004, 811 : 37 - 41
  • [8] Poly-Si gate engineering for advanced CMOS transistors by germanium implantation
    Bourdon, H
    Juhel, M
    Oudet, B
    Breil, N
    Lenoble, D
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 237 (1-2): : 148 - 154
  • [9] Interfacial reactions in a HfO2/TiN/poly-Si gate stack
    MacKenzie, M.
    Craven, A. J.
    McComb, D. W.
    De Gendt, S.
    APPLIED PHYSICS LETTERS, 2006, 88 (19)
  • [10] Fabrication Technique for pMOSFET poly-Si/TaN/TiN/HfSiAlON Gate Stack
    Li, Yongliang
    Xu, Qiuxia
    Wang, Wenwu
    Zhang, Jing
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2018, 7 (10) : P537 - P540