Possibilistic and fuzzy c-means clustering with weighted objects

被引:2
|
作者
Miyamoto, Sadaaki [1 ]
Inokuchi, Ryo [1 ]
Kuroda, Youhei [1 ]
机构
[1] Univ Tsukuba, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
D O I
10.1109/FUZZY.2006.1681813
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a family of methods of fuzzy clustering handling objects with weights. Weighted objects easily appear when an individual is a representative of several data units. Fuzzy c-means and possibilistic clustering algorithms for weighted objects are proposed. Relationships as wen as differences between solutions of possibilistic and fuzzy c-means methods are described. It is also shown that the methods for weighted objects and techniques handling cluster volumes are closely related. A feature in the present approach is a systematic development of a family of algorithms for weighted objects.
引用
收藏
页码:869 / +
页数:2
相关论文
共 50 条
  • [41] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377
  • [42] Weighted Fuzzy-Possibilistic C-Means Over Large Data Sets
    Wan, Renxia
    Gao, Yuelin
    Li, Caixia
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2012, 8 (04) : 82 - 107
  • [43] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [44] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Memon, Kashif Hussain
    Memon, Sufyan
    Qureshi, Muhammad Ali
    Alvi, Muhammad Bux
    Kumar, Dileep
    Shah, Rehan Ali
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (01) : 321 - 332
  • [45] A New Suppression-based Possibilistic Fuzzy c-means Clustering Algorithm
    Arora, J.
    Tushir, M.
    Dadhwal, S. K.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (03)
  • [46] Speedup of Fuzzy and Possibilistic Kernel c-Means for Large-Scale Clustering
    Havens, Timothy C.
    Chitta, Radha
    Jain, Anil K.
    Jin, Rong
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 463 - 470
  • [47] A self-tuning version for the possibilistic fuzzy c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
  • [48] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Kashif Hussain Memon
    Sufyan Memon
    Muhammad Ali Qureshi
    Muhammad Bux Alvi
    Dileep Kumar
    Rehan Ali Shah
    International Journal of Fuzzy Systems, 2019, 21 : 321 - 332
  • [49] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, Oscar
    Melin, Patricia
    RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 185 - 194
  • [50] A weighted fuzzy C-means clustering method for hardness prediction
    Yuan Liu
    Shi-zhong Wei
    Journal of Iron and Steel Research International, 2023, 30 : 176 - 191