A self-tuning version for the possibilistic fuzzy c-means clustering algorithm

被引:1
|
作者
Naghi, Mirtill-Boglarka [1 ,2 ]
Kovacs, Levente [3 ]
Szilagyi, Laszlo [2 ,3 ]
机构
[1] Obuda Univ, Doctoral Sch Appl Math & Appl Informat, Budapest, Hungary
[2] Sapientia Univ, Comput Intell Res Grp, Targu Mures, Romania
[3] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
关键词
fuzzy c-means clustering; possibilistic c-means clustering; mixed partitions; parameter selection;
D O I
10.1109/FUZZ52849.2023.10309788
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an alternative version of the possibilistic fuzzy c-means (PFCM) algorithm, which can tune automatically its possibilistic penalty terms and uses less parameters as the original PFCM. The proposed method incorporates some cluster size controlling variables into the objective function of PFCM, and with their help it can dynamically modify the penalty terms during the alternating optimization of the objective function. The proposed method is evaluated in comparison with the original PFCM using the IRIS data set and synthetic data. Numerical experiments show that the proposed method can produce fine partitions, and is stable in a wide range of its parameters.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Self-tuning Possibilistic c-Means Clustering Algorithm
    Szilagyi, Laszlo
    Lefkovits, Szidonia
    Kucsvan, Zsolt Levente
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 255 - 266
  • [2] Self-Tuning Possibilistic c-Means Clustering Models
    Szilagyi, Laszlo
    Lefkovits, Szidonia
    Szilagyi, Sandor M.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2019, 27 (Suppl.1) : 142 - 158
  • [3] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [4] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [5] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [6] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [7] Alternative fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Wu, Bin
    Zhou, Jian-Jiang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 11 - 14
  • [8] A generalized fuzzy-possibilistic c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (02) : 404 - 431
  • [9] Kernel fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Zhou, Jian-Jiang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1712 - 1717
  • [10] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):