A self-tuning version for the possibilistic fuzzy c-means clustering algorithm

被引:1
|
作者
Naghi, Mirtill-Boglarka [1 ,2 ]
Kovacs, Levente [3 ]
Szilagyi, Laszlo [2 ,3 ]
机构
[1] Obuda Univ, Doctoral Sch Appl Math & Appl Informat, Budapest, Hungary
[2] Sapientia Univ, Comput Intell Res Grp, Targu Mures, Romania
[3] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
关键词
fuzzy c-means clustering; possibilistic c-means clustering; mixed partitions; parameter selection;
D O I
10.1109/FUZZ52849.2023.10309788
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an alternative version of the possibilistic fuzzy c-means (PFCM) algorithm, which can tune automatically its possibilistic penalty terms and uses less parameters as the original PFCM. The proposed method incorporates some cluster size controlling variables into the objective function of PFCM, and with their help it can dynamically modify the penalty terms during the alternating optimization of the objective function. The proposed method is evaluated in comparison with the original PFCM using the IRIS data set and synthetic data. Numerical experiments show that the proposed method can produce fine partitions, and is stable in a wide range of its parameters.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] POSSIBILISTIC FUZZY C-MEANS CLUSTERING ON MEDICAL DIAGNOSTIC SYSTEMS
    Simhachalam, B.
    Ganesan, G.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1125 - 1129
  • [32] A gradient ascent algorithm based on possibilistic fuzzy C-Means for clustering noisy data
    Saberi, Hossein
    Sharbati, Reza
    Farzanegan, Behzad
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [33] A new Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, O.
    Melin, P.
    2015 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY DIGIPEN NAFIPS 2015, 2015,
  • [34] An optimized SVM based possibilistic fuzzy c-means clustering algorithm for tumor segmentation
    Kollem, Sreedhar
    Reddy, Katta Ramalinga
    Rao, Duggirala Srinivasa
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 409 - 437
  • [35] Possibilistic Intuitionistic Fuzzy c-Means Clustering Algorithm for MRI Brain Image Segmentation
    Verma, Hanuman
    Agrawal, R. K.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (05)
  • [36] RFID intrusion detection with possibilistic fuzzy c-Means clustering
    Yang, Haidong
    Li, Chunsheng
    Hu, Jue
    Journal of Computational Information Systems, 2010, 6 (08): : 2623 - 2632
  • [37] An optimized SVM based possibilistic fuzzy c-means clustering algorithm for tumor segmentation
    Sreedhar Kollem
    Katta Ramalinga Reddy
    Duggirala Srinivasa Rao
    Multimedia Tools and Applications, 2021, 80 : 409 - 437
  • [38] Hausdorff distance measure based interval fuzzy possibilistic c-means clustering algorithm
    Jeng, J.-T. (tsong@nfu.edu.tw), 1600, Chinese Fuzzy Systems Association (15):
  • [39] Cutset-type possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    APPLIED SOFT COMPUTING, 2018, 64 : 401 - 422
  • [40] A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    IEEE ACCESS, 2018, 6 : 78308 - 78320