OPTIMAL TRIANGULATIONS OF POINTS AND SEGMENTS WITH STEINER POINTS

被引:1
|
作者
Aronov, Boris [1 ]
Asano, Tetsuo [2 ]
Funke, Stefan [3 ]
机构
[1] NYU, Dept Comp & Informat Sci, Polytech Inst, Brooklyn, NY USA
[2] JAIST, Sch Informat Sci, Tokyo, Japan
[3] Ernst Moritz Arndt Univ Greifswald, Dept Math & Comp Sci, D-17487 Greifswald, Germany
关键词
Computational geometry; constrained Delaunay triangulation; polynomial-time algorithm; Steiner point; triangulation; Voronoi diagram; geometric optimization;
D O I
10.1142/S0218195910003219
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a set X of points in the plane and a set E of non-crossing segments with endpoints in X. One can efficiently compute the triangulation of the convex hull of the points, which uses X as the vertex set, respects E, and maximizes the minimum internal angle of a triangle. In this paper we consider a natural extension of this problem: Given in addition a Steiner point p, determine the optimal location of p and a triangulation of X boolean OR {p} respecting E, which is best among all triangulations and placements of p in terms of maximizing the minimum internal angle of a triangle. We present a polynomial- time algorithm for this problem and then extend our solution to handle any constant number of Steiner points.
引用
下载
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [31] Regular triangulations of dynamic sets of points
    Vigo, M
    Pla, N
    Cotrina, J
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (02) : 127 - 149
  • [32] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    Journal of Global Optimization, 2000, 18 : 17 - 33
  • [33] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DH
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 83 - 99
  • [34] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DG
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 17 - 33
  • [35] Steiner Points in the Space of Continuous Functions
    Bednov, B. B.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2011, 66 (06) : 255 - 259
  • [36] On Indecomposable Polyhedra and The Number of Steiner Points
    Goerigk, Nadja
    Si, Hang
    24TH INTERNATIONAL MESHING ROUNDTABLE, 2015, 124 : 343 - 355
  • [37] The Steiner Problem for Infinitely Many Points
    Paolini, E.
    Ulivi, L.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 43 - 56
  • [38] ANGLE SUMS AND STEINER POINTS OF POLYHEDRA
    MANI, P
    ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (03) : 380 - &
  • [39] ABSTRACT STEINER POINTS FOR CONVEX POLYTOPES
    BERG, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 4 (JUL): : 176 - &
  • [40] CHARACTERIZATION OF STEINER POINTS OF CONVEX SETS
    SCHMITT, KA
    MATHEMATISCHE ZEITSCHRIFT, 1968, 105 (05) : 387 - &