OPTIMAL TRIANGULATIONS OF POINTS AND SEGMENTS WITH STEINER POINTS

被引:1
|
作者
Aronov, Boris [1 ]
Asano, Tetsuo [2 ]
Funke, Stefan [3 ]
机构
[1] NYU, Dept Comp & Informat Sci, Polytech Inst, Brooklyn, NY USA
[2] JAIST, Sch Informat Sci, Tokyo, Japan
[3] Ernst Moritz Arndt Univ Greifswald, Dept Math & Comp Sci, D-17487 Greifswald, Germany
关键词
Computational geometry; constrained Delaunay triangulation; polynomial-time algorithm; Steiner point; triangulation; Voronoi diagram; geometric optimization;
D O I
10.1142/S0218195910003219
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a set X of points in the plane and a set E of non-crossing segments with endpoints in X. One can efficiently compute the triangulation of the convex hull of the points, which uses X as the vertex set, respects E, and maximizes the minimum internal angle of a triangle. In this paper we consider a natural extension of this problem: Given in addition a Steiner point p, determine the optimal location of p and a triangulation of X boolean OR {p} respecting E, which is best among all triangulations and placements of p in terms of maximizing the minimum internal angle of a triangle. We present a polynomial- time algorithm for this problem and then extend our solution to handle any constant number of Steiner points.
引用
下载
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [21] Clustering based on Steiner points
    Liang, Jiuzhen
    Song, Wei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2012, 3 (02) : 141 - 148
  • [22] Bichromatic quadrangulations with Steiner points
    Alvarez, Victor
    Sakai, Toshinori
    Urrutia, Jorge
    GRAPHS AND COMBINATORICS, 2007, 23 (Suppl 1) : 85 - 98
  • [23] STEINER POINTS OF CONVEX BODIES
    SCHNEIDER, R
    ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (02) : 241 - +
  • [24] Optimal Layout and Sizing of Pipe Distribution Network Considering Steiner Points
    Gupta, Rajesh
    Upadhyaya, Vaishali
    Sudhan, Vishnu K.
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2019: HYDRAULICS, WATERWAYS, AND WATER DISTRIBUTION SYSTEMS ANALYSIS, 2019, : 498 - 505
  • [25] Corresponding points of the Steiner plane of the fourth order and the main points of it
    Danielsson, O
    MATHEMATISCHE ANNALEN, 1930, 102 : 790 - 795
  • [26] COMPUTING STEINER POINTS AND PROBABILITY STEINER POINTS IN l(1) AND l(2) METRIC SPACES
    Weng, J. F.
    Mareels, I.
    Thomas, D. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (04) : 541 - 554
  • [27] Optimal angle bounds for Steiner triangulations of polygons
    Bishop, Christopher J.
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3127 - 3143
  • [28] Preprocessing Imprecise Points and Splitting Triangulations
    van Kreveld, Marc
    Loffler, Maarten
    Mitchell, Joseph S. B.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 544 - +
  • [29] TRIANGULATIONS FOR COMPUTING FIXED-POINTS
    TODD, MJ
    MATHEMATICAL PROGRAMMING, 1976, 10 (03) : 322 - 346
  • [30] PREPROCESSING IMPRECISE POINTS AND SPLITTING TRIANGULATIONS
    Van Kreveld, Marc
    Loffler, Maarten
    Mitchell, Joseph S. B.
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2990 - 3000