OPTIMAL TRIANGULATIONS OF POINTS AND SEGMENTS WITH STEINER POINTS

被引:1
|
作者
Aronov, Boris [1 ]
Asano, Tetsuo [2 ]
Funke, Stefan [3 ]
机构
[1] NYU, Dept Comp & Informat Sci, Polytech Inst, Brooklyn, NY USA
[2] JAIST, Sch Informat Sci, Tokyo, Japan
[3] Ernst Moritz Arndt Univ Greifswald, Dept Math & Comp Sci, D-17487 Greifswald, Germany
关键词
Computational geometry; constrained Delaunay triangulation; polynomial-time algorithm; Steiner point; triangulation; Voronoi diagram; geometric optimization;
D O I
10.1142/S0218195910003219
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a set X of points in the plane and a set E of non-crossing segments with endpoints in X. One can efficiently compute the triangulation of the convex hull of the points, which uses X as the vertex set, respects E, and maximizes the minimum internal angle of a triangle. In this paper we consider a natural extension of this problem: Given in addition a Steiner point p, determine the optimal location of p and a triangulation of X boolean OR {p} respecting E, which is best among all triangulations and placements of p in terms of maximizing the minimum internal angle of a triangle. We present a polynomial- time algorithm for this problem and then extend our solution to handle any constant number of Steiner points.
引用
下载
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [11] Off-centers:: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations
    Üngör, A
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 152 - 161
  • [12] Parameterization of triangulations and unorganized points
    Floater, M
    Hormann, K
    TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 287 - 316
  • [13] Steiner systems and configurations of points
    Ballico, Edoardo
    Favacchio, Giuseppe
    Guardo, Elena
    Milazzo, Lorenzo
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (02) : 199 - 219
  • [14] Defuzzification using Steiner points
    Vetterlein, T
    Navara, M
    FUZZY SETS AND SYSTEMS, 2006, 157 (11) : 1455 - 1462
  • [15] Clustering based on Steiner points
    Jiuzhen Liang
    Wei Song
    International Journal of Machine Learning and Cybernetics, 2012, 3 : 141 - 148
  • [16] Steiner systems and configurations of points
    Edoardo Ballico
    Giuseppe Favacchio
    Elena Guardo
    Lorenzo Milazzo
    Designs, Codes and Cryptography, 2021, 89 : 199 - 219
  • [17] Hamiltonian tetrahedralizations with Steiner points
    Escalona F.
    Fabila-Monroy R.
    Urrutia J.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 537 - 547
  • [18] STEINER POINTS IN HYPERBOLIC SPACES
    COTTETEMARD, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (14): : 661 - 663
  • [19] A VALUATION PROPERTY OF STEINER POINTS
    SALLEE, GT
    MATHEMATIKA, 1966, 13 (25P1) : 76 - &
  • [20] Bichromatic Quadrangulations with Steiner Points
    Victor Alvarez
    Toshinori Sakai
    Jorge Urrutia
    Graphs and Combinatorics, 2007, 23 : 85 - 98