Monte Carlo Methods for the Neutron Transport Equation

被引:1
|
作者
Cox, Alexander M. G. [1 ]
Harris, Simon C. [2 ]
Kyprianou, Andreas E. [1 ]
Wang, Minmin [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
[2] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
[3] Univ Sussex, Sch Math & Phys Sci, Brighton BN1 9RH, England
来源
基金
英国工程与自然科学研究理事会;
关键词
neutron transport equation; principal eigenvalue; semigroup theory; Perron-Frobenius decomposi-tion; Monte Carlo simulation; complexity; Doob h-transform; twisted Monte Carlo; STOCHASTIC-APPROXIMATION; SPACES;
D O I
10.1137/21M1390578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper continues our treatment of the neutron transport equation (NTE), building on the work in [A. M. G. Cox et al., J. Stat. Phys., 176 (2019), pp. 425-455; E. Horton, A. E. Kyprianou, and D. Villemonais, Ann Appl. Probab., 30 (2020), pp. 2573-2612; and S. C. Harris, E. Horton, and A. E. Kyprianou, Ann. Appl. Probab., 30 (2020), pp. 2815-2845], which describes the density (equivalently, flux) of neutrons through inhomogeneous fissile media. Our aim is to analyze existing and novel Monte Carlo (MC) algorithms, aimed at simulating the lead eigenvalue associated with the underlying model. This quantity is of principal importance in the nuclear regulatory industry, for which the NTE must be solved on complicated inhomogeneous domains corresponding to nuclear reactor cores, irradiative hospital equipment, food irradiation equipment, and so on. We include a complexity analysis of such MC algorithms, noting that no such undertaking has previously appeared in the literature. The new MC algorithms offer a variety of advantages and disadvantages of accuracy versus cost, as well as the possibility of more convenient computational parallelization.
引用
收藏
页码:775 / 825
页数:51
相关论文
共 50 条
  • [31] COMPARISON OF NEUTRON-ATTENUATION CALCULATIONS USING MONTE CARLO TRANSPORT AND DIFFUSION-THEORY METHODS
    TOMONTO, JR
    KAZI, AH
    PIRRO, J
    ROSEN, SS
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1965, 8 (01): : 188 - &
  • [32] Monte Carlo Methods for Volumetric Light Transport Simulation
    Novak, Jan
    Georgiev, Iliyan
    Hanika, Johannes
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2018, 37 (02) : 551 - 576
  • [33] Efficient, automated Monte Carlo methods for radiation transport
    Kong, Rong
    Ambrose, Martin
    Spanier, Jerome
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (22) : 9463 - 9476
  • [34] MULTILEVEL MONTE CARLO FOR SMOOTHING VIA TRANSPORT METHODS
    Houssineau, Jeremie
    Jasra, Ajay
    Singh, Sumeetpal S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2315 - A2335
  • [35] CALCULATION OF NEUTRON OUTFLOW AS A FUNCTION OF TIME WITH MONTE CARLO METHODS
    KSCHWEND.H
    RIEF, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, S 47 : T60 - &
  • [36] A comparison of Monte Carlo methods for neutron leakage at assembly level
    Dorval, E.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 591 - 600
  • [37] A MONTE-CARLO SOLUTION OF THE WIGNER TRANSPORT-EQUATION
    ROSSI, F
    JACOBONI, C
    NEDJALKOV, M
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1994, 9 (05) : 934 - 936
  • [38] Development and preliminary verification of a Monte Carlo neutron transport code IMPC-Neutron
    Fang, Peng
    Wu, Xiang
    Yang, Yongwei
    Wang, Huiqiao
    Yang, Lei
    Guo, Yuyao
    Lai, Hanghui
    ANNALS OF NUCLEAR ENERGY, 2022, 175
  • [39] Generation of a plasma neutron source for Monte Carlo neutron transport calculations in the tokamak JET
    Stancar, Ziga
    Gorelenkova, Marina
    Conroy, Sean
    Eriksson, Jacob
    Buchanan, James
    Snoj, Luka
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    FUSION ENGINEERING AND DESIGN, 2018, 136 : 1047 - 1051
  • [40] Adaptive Monte Carlo methods for solving hyperbolic telegraph equation
    Hong, Zhimin
    Wang, Yanjuan
    Hao, Hui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 405 - 415