Monte Carlo Methods for the Neutron Transport Equation

被引:1
|
作者
Cox, Alexander M. G. [1 ]
Harris, Simon C. [2 ]
Kyprianou, Andreas E. [1 ]
Wang, Minmin [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
[2] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
[3] Univ Sussex, Sch Math & Phys Sci, Brighton BN1 9RH, England
来源
基金
英国工程与自然科学研究理事会;
关键词
neutron transport equation; principal eigenvalue; semigroup theory; Perron-Frobenius decomposi-tion; Monte Carlo simulation; complexity; Doob h-transform; twisted Monte Carlo; STOCHASTIC-APPROXIMATION; SPACES;
D O I
10.1137/21M1390578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper continues our treatment of the neutron transport equation (NTE), building on the work in [A. M. G. Cox et al., J. Stat. Phys., 176 (2019), pp. 425-455; E. Horton, A. E. Kyprianou, and D. Villemonais, Ann Appl. Probab., 30 (2020), pp. 2573-2612; and S. C. Harris, E. Horton, and A. E. Kyprianou, Ann. Appl. Probab., 30 (2020), pp. 2815-2845], which describes the density (equivalently, flux) of neutrons through inhomogeneous fissile media. Our aim is to analyze existing and novel Monte Carlo (MC) algorithms, aimed at simulating the lead eigenvalue associated with the underlying model. This quantity is of principal importance in the nuclear regulatory industry, for which the NTE must be solved on complicated inhomogeneous domains corresponding to nuclear reactor cores, irradiative hospital equipment, food irradiation equipment, and so on. We include a complexity analysis of such MC algorithms, noting that no such undertaking has previously appeared in the literature. The new MC algorithms offer a variety of advantages and disadvantages of accuracy versus cost, as well as the possibility of more convenient computational parallelization.
引用
收藏
页码:775 / 825
页数:51
相关论文
共 50 条
  • [11] Monte Carlo solution of the Wigner transport equation
    Rossi, Fausto
    Jacoboni, Carlo
    Nedjalkov, M.
    Semiconductor Science and Technology, 1994, 9 (5 SUPPL) : 934 - 936
  • [12] INFLUENCE OF GROUP AVERAGING OF CONSTANTS ON MONTE-CARLO SOLUTION OF NEUTRON-TRANSPORT EQUATION
    PEKARSKII, GS
    KATSMAN, YY
    KUCHER, GA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (05): : 129 - 131
  • [13] STATIONARITY ISSUES IN MONTE CARLO SIMULATION FOR NEUTRON TRANSPORT
    Koreshi, Zafar Ullah
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2013, VOL 5, 2014,
  • [14] On the use of Monte Carlo perturbation in neutron transport problems
    Morillon, B
    ANNALS OF NUCLEAR ENERGY, 1998, 25 (14) : 1095 - 1117
  • [15] VECTORIZED MONTE-CARLO NEUTRON-TRANSPORT
    BOBROWICZ, FW
    FISHER, KJ
    BRICKNER, RG
    LECTURE NOTES IN PHYSICS, 1985, 240 : 245 - 261
  • [16] Transport with neutron flag based on Monte Carlo method
    Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
    Qinghua Daxue Xuebao, 2007, SUPPL. 1 (1062-1064):
  • [17] On a comparison of a neutron Monte Carlo transport simulation to a benchmark
    Barcellos, Luiz F. F. Chaves
    Bodmann, Bardo E. J.
    Vilhena, Marco T. M. B.
    PROGRESS IN NUCLEAR ENERGY, 2021, 134
  • [18] On a Monte Carlo method for neutron transport criticality computations
    Maire, Sylvain
    Talay, Denis
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) : 657 - 685
  • [19] Predicting Ex-core Detector Responseina PWR with Monte Carlo Neutron Transport Methods
    Goricanec, Tanja
    Kotnik, Domen
    Stancar, Ziga
    Snoj, Luka
    Kromar, Marjan
    ADVANCEMENTS IN NUCLEAR INSTRUMENTATION MEASUREMENT METHODS AND THEIR APPLICATIONS (ANIMMA 2019), 2020, 225
  • [20] Quantum Monte Carlo calculation of the equation of state of neutron matter
    Gandolfi, S.
    Illarionov, A. Yu.
    Schmidt, K. E.
    Pederiva, F.
    Fantoni, S.
    PHYSICAL REVIEW C, 2009, 79 (05):