Convergence of Ricci flow solutions to Taub-NUT

被引:0
|
作者
Di Giovanni, Francesco [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
关键词
Long-time convergence; Ricci flow; Taub-NUT;
D O I
10.1080/03605302.2021.1883651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci flow starting at an SU(2) cohomogeneity-1 metric g(0) on R-4 with monotone warping coefficients and whose restriction to any hypersphere is a Berger metric. If g(0) has bounded Hopf-fiber, curvature controlled by the size of the orbits and opens faster than a paraboloid in the directions orthogonal to the Hopf-fiber, then the flow converges to the Taub-NUT metric g(TNUT) in the Cheeger-Gromov sense in infinite time. We also classify the long-time behaviour when g(0) is asymptotically flat. In order to identify infinite-time singularity models we obtain a uniqueness result for g(TNUT):
引用
收藏
页码:1521 / 1568
页数:48
相关论文
共 50 条
  • [41] Rotating black rings on Taub-NUT
    Chen, Yu
    Teo, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [42] Geometric phase in Taub-NUT spacetime
    Chandrachur Chakraborty
    Banibrata Mukhopadhyay
    The European Physical Journal C, 83
  • [43] Black rings in Taub-NUT space
    Bena, I
    Kraus, P
    Warner, NP
    PHYSICAL REVIEW D, 2005, 72 (08)
  • [44] Hairy Taub-NUT/bolt-AdS solutions in Horndeski theory
    Arratia, Esteban
    Corral, Cristobal
    Figueroa, Jose
    Sanhueza, Leonardo
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [45] Almost-BPS solutions in multi-center Taub-NUT
    C. Rugina
    A. Ludu
    Gravitation and Cosmology, 2017, 23 : 320 - 328
  • [46] Nonholonomic Ricci flows and running cosmological constant: 3D Taub-NUT metrics
    Vacaru, Sergiu I.
    Visinescu, Mihai
    ROMANIAN REPORTS IN PHYSICS, 2008, 60 (02) : 251 - 270
  • [47] Taub-NUT黑洞的统计熵
    李固强
    湛江师范学院学报, 2007, (03) : 55 - 58
  • [48] Quaternionic extension of the double Taub-NUT metric
    Casteill, PY
    Ivanov, E
    Valent, G
    PHYSICS LETTERS B, 2001, 508 (3-4) : 354 - 364
  • [49] Magnetized black hole on the Taub-NUT instanton
    Nedkova, Petya G.
    Yazadjiev, Stoytcho S.
    PHYSICAL REVIEW D, 2012, 85 (06):
  • [50] Magnetized Kerr–Newman–Taub-NUT spacetimes
    Masoud Ghezelbash
    Haryanto M. Siahaan
    The European Physical Journal C, 2021, 81