Convergence of Ricci flow solutions to Taub-NUT

被引:0
|
作者
Di Giovanni, Francesco [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
关键词
Long-time convergence; Ricci flow; Taub-NUT;
D O I
10.1080/03605302.2021.1883651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci flow starting at an SU(2) cohomogeneity-1 metric g(0) on R-4 with monotone warping coefficients and whose restriction to any hypersphere is a Berger metric. If g(0) has bounded Hopf-fiber, curvature controlled by the size of the orbits and opens faster than a paraboloid in the directions orthogonal to the Hopf-fiber, then the flow converges to the Taub-NUT metric g(TNUT) in the Cheeger-Gromov sense in infinite time. We also classify the long-time behaviour when g(0) is asymptotically flat. In order to identify infinite-time singularity models we obtain a uniqueness result for g(TNUT):
引用
收藏
页码:1521 / 1568
页数:48
相关论文
共 50 条
  • [31] Investigations of solutions of Einstein's field equations close to λ-Taub-NUT
    Beyer, Florian
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [32] Taub-NUT黑洞的熵
    万浪辉,朱建阳
    江西师范大学学报(自然科学版), 1999, (01) : 9 - 12
  • [33] Twisted black hole is Taub-NUT
    Ong, Yen Chin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01):
  • [34] Branes, instantons, and Taub-NUT spaces
    Witten, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [35] On the instability of Lorentzian Taub-NUT space
    Holzegel, Gustav
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (11) : 3951 - 3962
  • [36] Symmetries of Taub-NUT Dual Metrics
    Dumitru Baleanu
    Sorin Codoban
    General Relativity and Gravitation, 1999, 31 : 497 - 509
  • [37] The Dirac field in Taub-NUT background
    Cotaescu, II
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (10): : 1743 - 1758
  • [38] Chaos and Taub-NUT related spacetimes
    Letelier, P.S.
    Vieira, W.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 244 (05): : 324 - 328
  • [39] Almost-BPS Solutions in Multi-Center Taub-NUT
    Rugina, C.
    Ludu, A.
    GRAVITATION & COSMOLOGY, 2017, 23 (04): : 320 - 328
  • [40] Geometric phase in Taub-NUT spacetime
    Chakraborty, Chandrachur
    Mukhopadhyay, Banibrata
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (10):