Convergence of Ricci flow solutions to Taub-NUT

被引:0
|
作者
Di Giovanni, Francesco [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
关键词
Long-time convergence; Ricci flow; Taub-NUT;
D O I
10.1080/03605302.2021.1883651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci flow starting at an SU(2) cohomogeneity-1 metric g(0) on R-4 with monotone warping coefficients and whose restriction to any hypersphere is a Berger metric. If g(0) has bounded Hopf-fiber, curvature controlled by the size of the orbits and opens faster than a paraboloid in the directions orthogonal to the Hopf-fiber, then the flow converges to the Taub-NUT metric g(TNUT) in the Cheeger-Gromov sense in infinite time. We also classify the long-time behaviour when g(0) is asymptotically flat. In order to identify infinite-time singularity models we obtain a uniqueness result for g(TNUT):
引用
收藏
页码:1521 / 1568
页数:48
相关论文
共 50 条
  • [21] Rotating black rings on Taub-NUT
    Yu Chen
    Edward Teo
    Journal of High Energy Physics, 2012
  • [22] Taub-NUT dynamics with a magnetic field
    Jante, Rogelio
    Schroers, Bernd J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 104 : 305 - 328
  • [23] Circular holonomy in the Taub-NUT spacetime
    Bini, D
    Cherubini, C
    Jantzen, RT
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (21) : 5481 - 5488
  • [24] Thermodynamics of Lorentzian Taub-NUT spacetimes
    Hennigar, Robie A.
    Kubiznak, David
    Mann, Robert B.
    PHYSICAL REVIEW D, 2019, 100 (06)
  • [25] Spinning particles in Taub-NUT space
    Vaman, D
    Visinescu, M
    PHYSICAL REVIEW D, 1998, 57 (06): : 3790 - 3793
  • [26] Taub-NUT from the Dirac monopole
    Godazgar, Hadi
    Godazgar, Mahdi
    Pope, C. N.
    PHYSICS LETTERS B, 2019, 798
  • [27] Boosting Taub-NUT to a BPS NUT-wave
    Argurio, Riccardo
    Dehouck, Francois
    Houart, Laurent
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (01):
  • [28] Symmetries of Taub-NUT dual metrics
    Baleanu, D
    Codoban, S
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (04) : 497 - 509
  • [29] Chaos and Taub-NUT related spacetimes
    Letelier, PS
    Vieira, WM
    PHYSICS LETTERS A, 1998, 244 (05) : 324 - 328
  • [30] The Dirac equation in Taub-NUT space
    Comtet, A.
    Horvathy, P. A.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 349 (1-2):