Convergence of Ricci flow solutions to Taub-NUT

被引:0
|
作者
Di Giovanni, Francesco [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
关键词
Long-time convergence; Ricci flow; Taub-NUT;
D O I
10.1080/03605302.2021.1883651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci flow starting at an SU(2) cohomogeneity-1 metric g(0) on R-4 with monotone warping coefficients and whose restriction to any hypersphere is a Berger metric. If g(0) has bounded Hopf-fiber, curvature controlled by the size of the orbits and opens faster than a paraboloid in the directions orthogonal to the Hopf-fiber, then the flow converges to the Taub-NUT metric g(TNUT) in the Cheeger-Gromov sense in infinite time. We also classify the long-time behaviour when g(0) is asymptotically flat. In order to identify infinite-time singularity models we obtain a uniqueness result for g(TNUT):
引用
收藏
页码:1521 / 1568
页数:48
相关论文
共 50 条
  • [1] TAUB-NUT FAMILY OF SOLUTIONS
    YAMAZAKI, M
    PHYSICS LETTERS A, 1978, 68 (5-6) : 412 - 414
  • [2] Ricci flows connecting Taub-Bolt and Taub-NUT metrics
    Holzegel, Gustav
    Schmelzer, Thomas
    Warnick, Claude
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (24) : 6201 - 6217
  • [3] Taub-NUT solutions in conformal electrodynamics
    Bordo, Alvaro Ballon
    Kubiznak, David
    Perche, Tales Rick
    PHYSICS LETTERS B, 2021, 817
  • [4] Thermodynamics of Taub-NUT and Plebanski solutions
    Hai-Shan Liu
    H. Lü
    Liang Ma
    Journal of High Energy Physics, 2022
  • [5] Thermodynamics of Taub-NUT and Plebanski solutions
    Liu, Hai-Shan
    Lu, H.
    Ma, Liang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (10)
  • [6] Circular orbits in the Taub-NUT and massless Taub-NUT spacetime
    Pradhan, Parthapratim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (07)
  • [7] TAUB-NUT CRYSTAL
    Imazato, Harunobu
    Mizoguchi, Shun'Ya
    Yata, Masaya
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (30-31): : 5143 - 5169
  • [8] Cracking the Taub-NUT
    Dechant, Pierre-Philippe
    Lasenby, Anthony N.
    Hobson, Michael P.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (18)
  • [9] Dilatonic Taub-NUT multi-body solutions
    Park, DH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 30 (02) : 332 - 335
  • [10] Fermions in Taub-NUT background
    Visinescu, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 1049 - 1054