A conservative discontinuous Galerkin scheme for the 2D incompressible Navier-Stokes equations

被引:12
|
作者
Einkemmer, L. [1 ]
Wiesenberger, M. [2 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Ion Phys & Appl Phys, Assoc Euratom OAW, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Arakawa's method; Discontinuous Galerkin; Incompressible Navier-Stokes equations; Conservative methods; Two-dimensional fluids; TURBULENCE; GPU;
D O I
10.1016/j.cpc.2014.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier-Stokes equations. We propose an extension of Arakawa's classical finite difference scheme for fluid flow in the vorticity-stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and verify the conservation properties, which are essential for long time integration. Furthermore, we discuss the massively parallel implementation on graphic processing units. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2865 / 2873
页数:9
相关论文
共 50 条
  • [1] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166
  • [2] Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations
    Cheung, Siu Wun
    Chung, Eric
    Kim, Hyea Hyun
    Qian, Yue
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 251 - 266
  • [3] A DISCONTINUOUS GALERKIN PRESSURE CORRECTION SCHEME FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS: STABILITY AND CONVERGENCE
    Masri, Rami
    Liu, Chen
    Riviere, Beatrice
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (336) : 1625 - 1654
  • [4] Characteristic Local Discontinuous Galerkin Methods for Incompressible Navier-Stokes Equations
    Wang, Shuqin
    Deng, Weihua
    Yuan, Jinyun
    Wu, Yujiang
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (01) : 202 - 227
  • [5] Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations
    Giorgiani, Giorgio
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. COMPUTERS & FLUIDS, 2014, 98 : 196 - 208
  • [6] On the dissipation of conforming and discontinuous Galerkin schemes for the incompressible Navier-Stokes equations
    Chen, Xi
    Drapaca, Corina
    [J]. AIP ADVANCES, 2022, 12 (07)
  • [7] A conservative discontinuous Galerkin discretization for the chemically reacting Navier-Stokes equations
    Johnson, Ryan F.
    Kercher, Andrew D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [8] DISCONTINUOUS GALERKIN APPROXIMATIONS OF THE STOKES AND NAVIER-STOKES EQUATIONS
    Chrysafinos, Konstantinos
    Walkington, Noel J.
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 2135 - 2167
  • [9] A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
    Girault, V
    Rivière, B
    Wheeler, MF
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1115 - 1147
  • [10] Penalty-free discontinuous Galerkin methods for incompressible Navier-Stokes equations
    Riviere, Beatrice
    Sardar, Shirin
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (06): : 1217 - 1236