A conservative discontinuous Galerkin scheme for the 2D incompressible Navier-Stokes equations

被引:12
|
作者
Einkemmer, L. [1 ]
Wiesenberger, M. [2 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Ion Phys & Appl Phys, Assoc Euratom OAW, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Arakawa's method; Discontinuous Galerkin; Incompressible Navier-Stokes equations; Conservative methods; Two-dimensional fluids; TURBULENCE; GPU;
D O I
10.1016/j.cpc.2014.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier-Stokes equations. We propose an extension of Arakawa's classical finite difference scheme for fluid flow in the vorticity-stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and verify the conservation properties, which are essential for long time integration. Furthermore, we discuss the massively parallel implementation on graphic processing units. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2865 / 2873
页数:9
相关论文
共 50 条
  • [41] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [42] GMRES Discontinuous Galerkin solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 197 - 208
  • [43] Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains
    Persson, P. O.
    Bonet, J.
    Peraire, J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (17-20) : 1585 - 1595
  • [44] On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations
    Dolejsí, V
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (10) : 1083 - 1106
  • [45] The Elastoplast Discontinuous Galerkin (EDG) method for the Navier-Stokes equations
    Borrel, M.
    Ryan, J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) : 1 - 22
  • [46] Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method
    Krasnov, M. M.
    Kuchugov, P. A.
    Ladonkina, M. E.
    Lutsky, A. E.
    Tishkin, V. F.
    [J]. 10TH INTERNATIONAL CONFERENCE ON AEROPHYSICS AND PHYSICAL MECHANICS OF CLASSICAL AND QUANTUM SYSTEMS, 2017, 815
  • [47] A MULTILEVEL DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Prill, F.
    Lukacova-Medvidova, M.
    Hartmann, R.
    [J]. ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 91 - 100
  • [48] Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations
    Diosady, Laslo T.
    Darmofal, David L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (11) : 3917 - 3935
  • [49] 2D constrained Navier-Stokes equations
    Brzezniak, Zdzislaw
    Dhariwal, Gaurav
    Mariani, Mauro
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2833 - 2864
  • [50] A note on 2D Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (06):