2D constrained Navier-Stokes equations

被引:6
|
作者
Brzezniak, Zdzislaw [1 ]
Dhariwal, Gaurav [1 ,3 ]
Mariani, Mauro [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Natl Res Univ, Higher Sch Econ, Fac Math, 6 Usacheva St, Moscow 119048, Russia
[3] TU Vienna, Inst Anal & Sci Comp, Wiedner Hauptstr 8, A-1040 Vienna, Austria
关键词
Navier-Stokes equations; Constrained energy; Periodic boundary conditions; Gradient flow; Euler equations; MANIFOLD;
D O I
10.1016/j.jde.2017.11.0050022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study 2D Navier-Stokes equations with a constraint forcing the conservation of the energy of the solution. We prove the existence and uniqueness of a global solution for the constrained Navier-Stokes equation on R-2 and T-2, by a fixed point argument. We also show that the solution of the constrained equation converges to the solution of the Euler equation as the viscosity nu vanishes. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2833 / 2864
页数:32
相关论文
共 50 条
  • [1] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [2] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [3] A note on 2D Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (06):
  • [4] Feedback stabilization for the 2D Navier-Stokes equations
    Fursikov, AV
    [J]. NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 179 - 196
  • [5] Anticipating stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1380 - 1408
  • [6] Topology of trajectories of the 2D Navier-Stokes equations
    Lee, Jon
    [J]. CHAOS, 1992, 2 (04) : 537 - 565
  • [7] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [8] Generator of Solutions for 2D Navier-Stokes Equations
    Koptev, Alexander, V
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (03): : 324 - 330
  • [9] The 2D constrained Navier-Stokes equation and intermediate asymptotics
    Caglioti, E.
    Pulvirenti, M.
    Rousset, F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (34)
  • [10] TIME-SPACE L2-BOUNDEDNESS FOR THE 2D NAVIER-STOKES EQUATIONS AND HYPERBOLIC NAVIER-STOKES EQUATIONS
    Kobayashi, Takayuki
    Misawa, Masashi
    Nakamura, Kenji
    [J]. TSUKUBA JOURNAL OF MATHEMATICS, 2019, 43 (02) : 223 - 239