Dynamics of stochastic 2D Navier-Stokes equations

被引:9
|
作者
Mohammed, Salah [1 ]
Zhang, Tusheng [2 ]
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
Stochastic Navier-Stokes equation; Cocycle; Lyapunov exponents; Stable manifolds; Invariant manifolds; STABLE MANIFOLD THEOREM; INVARIANT-MANIFOLDS; SYSTEMS; MEMORY;
D O I
10.1016/j.jfa.2009.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, We Study the dynamics of a two-dimensional stochastic Navier-Stokes equation on a smooth domain, driven by linear multiplicative white noise. We show that solutions of the 2D Navier-Stokes equation generate a perfect and locally compacting C-1,C-1 cocycle. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. The Lyapunov spectrum characterizes the asymptotics of the cocycle near an equilibrium/stationary solution. We give sufficient conditions on the parameters of the Navier-Stokes equation and the geometry of the planar domain for hyperbolicity of the zero equilibrium, uniqueness of the stationary solution (viz. ergodicity), local almost sure asymptotic stability of the cocycle, and the existence of global invariant foliations of the energy space. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3543 / 3591
页数:49
相关论文
共 50 条
  • [1] Anticipating stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1380 - 1408
  • [2] Averaging Principles for Stochastic 2D Navier-Stokes Equations
    Gao, Peng
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (02)
  • [3] Inviscid limit for 2D stochastic Navier-Stokes equations
    Cipriano, Fernanda
    Torrecilla, Ivan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2405 - 2426
  • [4] Kinetic Theory of Jet Dynamics in the Stochastic Barotropic and 2D Navier-Stokes Equations
    Bouchet, Freddy
    Nardini, Cesare
    Tangarife, Tomas
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (04) : 572 - 625
  • [5] Exponential mixing of the 2D stochastic Navier-Stokes dynamics
    Bricmont, J
    Kupiainen, A
    Lefevere, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) : 87 - 132
  • [6] Kinetic Theory of Jet Dynamics in the Stochastic Barotropic and 2D Navier-Stokes Equations
    Freddy Bouchet
    Cesare Nardini
    Tomás Tangarife
    [J]. Journal of Statistical Physics, 2013, 153 : 572 - 625
  • [7] Exponential Mixing of the 2D Stochastic Navier-Stokes Dynamics
    J. Bricmont
    A. Kupiainen
    R. Lefevere
    [J]. Communications in Mathematical Physics, 2002, 230 : 87 - 132
  • [8] Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity
    Liang, Siyu
    Zhang, Ping
    Zhu, Rongchan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 473 - 508
  • [9] Inviscid limit of stochastic damped 2D Navier-Stokes equations
    Bessaih, Hakima
    Ferrario, Benedetta
    [J]. NONLINEARITY, 2014, 27 (01) : 1 - 15
  • [10] The Kolmogorov equation associated to the Stochastic Navier-Stokes equations in 2D
    Barbu, V
    Da Prato, G
    Debussche, A
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (02) : 163 - 182