Inviscid limit of stochastic damped 2D Navier-Stokes equations

被引:15
|
作者
Bessaih, Hakima [1 ]
Ferrario, Benedetta [2 ]
机构
[1] Univ Wyoming, Dept Math, Dept 3036, Laramie, WY 82071 USA
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
STATIONARY SOLUTIONS; EULER EQUATIONS; ERGODICITY; MARTINGALE; EXISTENCE;
D O I
10.1088/0951-7715/27/1/1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inviscid limit of the stochastic damped 2D Navier-Stokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The rates are computed with respect to a limit measure of the unique invariant measure of the stochastic damped Navier-Stokes equations.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Inviscid limit for 2D stochastic Navier-Stokes equations
    Cipriano, Fernanda
    Torrecilla, Ivan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2405 - 2426
  • [2] A KAM Approach to the Inviscid Limit for the 2D Navier-Stokes Equations
    Franzoi, Luca
    Montalto, Riccardo
    ANNALES HENRI POINCARE, 2024, 25 (12): : 5231 - 5275
  • [3] THE INVISCID LIMIT FOR THE 2D NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS
    Bardos, Claude W.
    Nguyen, Trinh T.
    Nguyen, Toan T.
    Titi, Edriss S.
    KINETIC AND RELATED MODELS, 2022, 15 (03) : 317 - 340
  • [4] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090
  • [5] A short remark on inviscid limit of the stochastic Navier-Stokes equations
    Chaudhary, Abhishek
    Vallet, Guy
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [6] LARGE FRICTION LIMIT AND THE INVISCID LIMIT OF 2D NAVIER-STOKES EQUATIONS UNDER NAVIER FRICTION CONDITION
    Kim, Namkwon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1653 - 1663
  • [7] INVISCID LIMIT FOR THE DAMPED GENERALIZED INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON T2
    Liu, Yang
    Sun, Chunyou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4383 - 4408
  • [8] Inviscid limit for damped and driven incompressible Navier-Stokes equations in R2
    Constantin, P.
    Ramos, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (02) : 529 - 551
  • [9] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [10] Anticipating stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1380 - 1408