Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations

被引:43
|
作者
Giorgiani, Giorgio [1 ]
Fernandez-Mendez, Sonia [1 ]
Huerta, Antonio [1 ]
机构
[1] Univ Politecn Catalunya BarcelonaTech, ETS Ingn Caminos Canales & Puertos, Dept Matemat Aplicada 3, Lab Calcul Numer LaCaN, Barcelona 08034, Spain
关键词
Hybrid methods; Discontinuous Galerkin; Navier-Stokes equations; CFD; p-Adaptivity; High-order; Hybridizable Discontinuous Galerkin; 2ND-ORDER ELLIPTIC PROBLEMS; DEGREE HDG METHODS; ERROR ESTIMATION; NONCONFORMING MESHES; FUNCTIONAL OUTPUTS; WEAK SOLUTIONS; PART II; BOUNDS; FLOW; APPROXIMATIONS;
D O I
10.1016/j.compfluid.2014.01.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A degree adaptive Hybridizable Discontinuous Galerkin (HDG) method for the solution of the incompressible Navier-Stokes equations is presented. The key ingredient is an accurate and computationally inexpensive a posteriori error estimator based on the super-convergence properties of HDG. The error estimator drives the local modification of the approximation degree in the elements and faces of the mesh, aimed at obtaining a uniform error distribution below a user-given tolerance in a given output of interest. Three 2D numerical examples are presented. High efficiency of the proposed error estimator is found, and an important reduction of the computational effort is shown with respect to non-adaptive computations, both for steady state and transient simulations. (C) 2014 Published by Elsevier Ltd.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 50 条
  • [1] An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1147 - 1170
  • [2] ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE STEADY-STATE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Cesmelioglu, Aycil
    Cockburn, Bernardo
    Qiu, Weifeng
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (306) : 1643 - 1670
  • [3] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166
  • [4] Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations
    Ueckermann, M. P.
    Lermusiaux, P. F. J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 : 390 - 421
  • [5] Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations
    Cheung, Siu Wun
    Chung, Eric
    Kim, Hyea Hyun
    Qian, Yue
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 251 - 266
  • [6] AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Williams, D. M.
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 95 - 121
  • [7] Characteristic Local Discontinuous Galerkin Methods for Incompressible Navier-Stokes Equations
    Wang, Shuqin
    Deng, Weihua
    Yuan, Jinyun
    Wu, Yujiang
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (01) : 202 - 227
  • [8] On the dissipation of conforming and discontinuous Galerkin schemes for the incompressible Navier-Stokes equations
    Chen, Xi
    Drapaca, Corina
    [J]. AIP ADVANCES, 2022, 12 (07)
  • [9] DISCONTINUOUS GALERKIN APPROXIMATIONS OF THE STOKES AND NAVIER-STOKES EQUATIONS
    Chrysafinos, Konstantinos
    Walkington, Noel J.
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 2135 - 2167
  • [10] A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
    Girault, V
    Rivière, B
    Wheeler, MF
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1115 - 1147