Characteristic Local Discontinuous Galerkin Methods for Incompressible Navier-Stokes Equations

被引:5
|
作者
Wang, Shuqin [1 ,2 ]
Deng, Weihua [1 ]
Yuan, Jinyun [2 ]
Wu, Yujiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Univ Fed Parana, Dept Math, Ctr Politecn, CP 19-081, BR-81531990 Curitiba, Parana, Brazil
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; local discontinuous Galerkin method; symmetric variational formulation; FINITE-ELEMENT-METHOD; CONVECTION-DIFFUSION EQUATIONS; EULERIAN-LAGRANGIAN METHODS; ERROR ANALYSIS; FAMILY; APPROXIMATIONS; CONVERGENCE;
D O I
10.4208/cicp.220515.031016a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By combining the characteristicmethod and the local discontinuous Galerkin method with carefully constructing numerical fluxes, variational formulations are established for time-dependent incompressible Navier-Stokes equations in R-2. The nonlinear stability is proved for the proposed symmetric variational formulation. Moreover, for general triangulations the priori estimates for the L-2 - norm of the errors in both velocity and pressure are derived. Some numerical experiments are performed to verify theoretical results.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 50 条
  • [1] Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations
    Cheung, Siu Wun
    Chung, Eric
    Kim, Hyea Hyun
    Qian, Yue
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 251 - 266
  • [2] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166
  • [3] Penalty-free discontinuous Galerkin methods for incompressible Navier-Stokes equations
    Riviere, Beatrice
    Sardar, Shirin
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (06): : 1217 - 1236
  • [4] Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations
    Giorgiani, Giorgio
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. COMPUTERS & FLUIDS, 2014, 98 : 196 - 208
  • [5] On the dissipation of conforming and discontinuous Galerkin schemes for the incompressible Navier-Stokes equations
    Chen, Xi
    Drapaca, Corina
    [J]. AIP ADVANCES, 2022, 12 (07)
  • [6] Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations: Spectral analysis and computational results
    Dumbser, M.
    Fambri, F.
    Furci, I.
    Mazza, M.
    Serra-Capizzano, S.
    Tavelli, M.
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [7] DISCRETE FUNCTIONAL ANALYSIS TOOLS FOR DISCONTINUOUS GALERKIN METHODS WITH APPLICATION TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Di Pietro, Daniele A.
    Ern, Alexandre
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1303 - 1330
  • [8] Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations
    Diosady, Laslo T.
    Darmofal, David L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (11) : 3917 - 3935
  • [9] DISCONTINUOUS GALERKIN APPROXIMATIONS OF THE STOKES AND NAVIER-STOKES EQUATIONS
    Chrysafinos, Konstantinos
    Walkington, Noel J.
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 2135 - 2167
  • [10] A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
    Girault, V
    Rivière, B
    Wheeler, MF
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1115 - 1147