Cryo-CMOS for Quantum Computing

被引:0
|
作者
Charbon, E. [1 ,2 ]
Sebastiano, F. [1 ]
Vladimirescu, A. [1 ,3 ,5 ]
Homulle, H. [1 ]
Visser, S. [1 ]
Song, L. [1 ,4 ]
Incandela, R. M. [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Inst Super Elect Paris, Paris, France
[4] Tsinghua Univ, Beijing, Peoples R China
[5] Univ Calif Berkeley, Berkeley, CA USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cryogenic CMOS, or cryo-CMOS circuits and systems, are emerging in VLSI design for many applications, in primis quantum computing. Fault-tolerant quantum bits (qubits) in surface code configurations, one of the most accepted implementations in quantum computing, operate in deep sub-Kelvin regime and require scalable classical control circuits. In this paper we advocate the need for a new generation of deep-submicron CMOS circuits operating at deep-cryogenic temperatures to achieve the perfounance required in a fault-tolerant qubit system. We outline the challenges and limitations of operating CMOS in near-zero Kelvin regimes and we propose solutions. The paper concludes with several examples showing the suitability of integrating fault-tolerant. qubits with CMOS.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] A Cryo-CMOS Voltage Reference in 28-nm FDSOI
    Yang, Yuanyuan
    Das, Kushal
    Moini, Alireza
    Reilly, David J.
    [J]. IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 : 186 - 189
  • [42] Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS
    Michl, J.
    Grill, A.
    Stampfer, B.
    Waldhoer, D.
    Schleich, C.
    Knobloch, T.
    Ioannidis, E.
    Enichlmair, H.
    Minixhofer, R.
    Kaczer, B.
    Parvais, B.
    Govoreanu, B.
    Radu, I
    Grasser, T.
    Waltl, M.
    [J]. 2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [43] Static Noise Margin Analysis for Cryo-CMOS SRAM Cell
    Hu, Vita Pi-Ho
    Liu, Chang-Ju
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2021,
  • [44] A 1GS/s 6-to-8b 0.5mW/Qubit Cryo-CMOS SAR ADC for Quantum Computing in 40nm CMOS
    Kiene, Gerd
    Catania, Alessandro
    Overwater, Ramon
    Bruschi, Paolo
    Charbon, Edoardo
    Babaie, Masoud
    Sebastiano, Fabio
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 214 - +
  • [45] PERFORMANCE AND HOT-CARRIER EFFECTS OF SMALL CRYO-CMOS DEVICES
    AOKI, M
    HANAMURA, S
    MASUHARA, T
    YANO, K
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (01) : 8 - 18
  • [46] A Cryo-CMOS Low-Noise Amplifier for the Square Kilometre Array
    Sheldon, Alexander
    Belostotski, Leonid
    [J]. 2018 18TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM 2018), 2018,
  • [47] Superconducting Nb interconnects for Cryo-CMOS and superconducting digital logic applications
    Numata, Hideaki
    Iguchi, Noriyuki
    Tanaka, Masamitsu
    Okamoto, Koichiro
    Miura, Sadahiko
    Uchida, Ken
    Ishikuro, Hiroki
    Sakamoto, Toshitsugu
    Tada, Munehiro
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)
  • [48] Demonstration of Single-Flux-Quantum 64-B Lookup Table With Cryo-CMOS Decoders for Reconfiguration
    Hironaka, Yuki
    Hosoya, Takuya
    Yamanashi, Yuki
    Yoshikawa, Nobuyuki
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (08)
  • [49] Design of Cryo-CMOS Analog Circuits using the Gm/ID Approach
    Enz, Christian
    Han, Hung-Chi
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [50] PERFORMANCE AND HOT-CARRIER EFFECTS OF SMALL CRYO-CMOS DEVICES.
    Aoki, Masaaki
    Hanamura, Shoji
    Masuhara, Toshiaki
    Yano, Kazuo
    [J]. IEEE Transactions on Electron Devices, 1987, ED-34 (01) : 8 - 18