Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS

被引:11
|
作者
Michl, J. [2 ]
Grill, A. [3 ]
Stampfer, B. [1 ]
Waldhoer, D. [1 ,2 ]
Schleich, C. [1 ,2 ]
Knobloch, T. [2 ]
Ioannidis, E. [4 ]
Enichlmair, H. [4 ]
Minixhofer, R. [4 ]
Kaczer, B. [3 ]
Parvais, B. [3 ,5 ]
Govoreanu, B. [3 ]
Radu, I [3 ]
Grasser, T. [2 ]
Waltl, M. [1 ,2 ]
机构
[1] TU Wien, CDL Single Defect Spect, A-1040 Vienna, Austria
[2] TU Wien, Inst Microelect, A-1040 Vienna, Austria
[3] IMEC, B-3001 Leuven, Belgium
[4] Ams OSRAM AG, A-8141 Premstatten, Austria
[5] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
关键词
TEMPERATURE; DEFECTS;
D O I
10.1109/IEDM19574.2021.9720501
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CMOS technologies operating at cryogenic temperatures play a key role in the successful deployment of quantum computers. While tremendous efforts have been devoted to understanding the device electrostatics, there is a lack of studies on the device performance degradation mechanisms, as for instance bias temperature instability (BTI), in cryogenic environments. To study BTI, typically large-area devices are characterized. However, as we demonstrate, when approaching the cyrogenic temperature regime, the investigation of single defects becomes necessary. Using single defect measurements, we show that even at 4 K, there are active defects causing random telegraph noise (RTN). We can explain the temperature dependence of the charge transfer mechanism by nuclear tunneling in the framework of the nonradiative multi-phonon (NMP) model. Our measurements and simulations indicate that interface defects are responsible for RTN at cryogenic temperatures. Due to their small relaxation energies and displacements during charge transitions, interface traps have high charge transition rates and do not freeze out, thus playing a crucial role for a high-performance operation of noise-sensitive circuits in cryogenic environments.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Cryo-CMOS for Quantum Computing
    Charbon, E.
    Sebastiano, F.
    Vladimirescu, A.
    Homulle, H.
    Visser, S.
    Song, L.
    Incandela, R. M.
    [J]. 2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [2] Static Noise Margin Analysis for Cryo-CMOS SRAM Cell
    Hu, Vita Pi-Ho
    Liu, Chang-Ju
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2021,
  • [3] Cryo-CMOS Compact Modeling
    Enz, Christian
    Beckers, Arnout
    Jazaeri, Farzan
    [J]. 2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [4] A Cryo-CMOS Low-Noise Amplifier for the Square Kilometre Array
    Sheldon, Alexander
    Belostotski, Leonid
    [J]. 2018 18TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM 2018), 2018,
  • [5] Random Telegraph Noise in Analog CMOS Circuits
    da Silva, Mauricio Banaszeski
    Wirth, Gilson I.
    Tuinhout, Hans P.
    Zegers-van Duijnhoven, Adrie
    Scholten, Andries J.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (06) : 2229 - 2242
  • [6] Characterization and Modeling of Mismatch in Cryo-CMOS
    Hart, P. A. T.
    Babaie, M.
    Charbon, Edoardo
    Vladimirescu, Andrei
    Sebastiano, Fabio
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 (01): : 263 - 273
  • [7] Hot Carrier Degradation in Cryo-CMOS
    Chakraborty, W.
    Sharma, U.
    Datta, S.
    Mahapatra, S.
    [J]. 2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [8] The role of cryo-CMOS in quantum computers
    Charbon, Edoardo
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES (IWASI), 2019, : 181 - 181
  • [9] Random telegraph noise in magnetically driven garnets
    Sponsel, Robert
    Hamann, Aaron
    Dahlberg, E. Dan
    [J]. PHYSICAL REVIEW B, 2021, 103 (13)
  • [10] A Cryo-CMOS PLL for Quantum Computing Applications
    Gong, Jiang
    Charbon, Edoardo
    Sebastiano, Fabio
    Babaie, Masoud
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (05) : 1362 - 1375