Biophysical Parameter Estimation With a Semisupervised Support Vector Machine

被引:42
|
作者
Camps-Valls, Gustavo [1 ]
Munoz-Mari, Jordi [1 ]
Gomez-Chova, Luis [1 ]
Richter, Katja [2 ]
Calpe-Maravilla, Javier [1 ]
机构
[1] Univ Valencia, Escola Tecn Super Engn, Dept Elect Engn, E-46100 Valencia, Spain
[2] Univ Naples Federico II, Fac Agr, Dipartimento Ingn Agr & Agron Territorio, I-80055 Portici, Na, Italy
关键词
Biophysical parameter; estimation; graph; kernel method; regression; retrieval; semisupervised learning (SSL); support vector machine;
D O I
10.1109/LGRS.2008.2009077
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents two kernel-based methods for semisupervised regression. The methods rely on building a graph or hypergraph Laplacian with both the available labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). Given the high computational burden involved, we present two alternative formulations based on the Nystrom method and the incomplete Cholesky factorization to achieve operational processing times. The semisupervised SVR algorithms are successfully tested in multiplatform leaf area index estimation and oceanic chlorophyll concentration prediction. Experiments are carried out with both multispectral and hyperspectral data, demonstrating good generalization capabilities when a low number of labeled samples are available, which is usually the case in biophysical parameter retrieval.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 50 条
  • [42] Support Vector Machine Parameter Tuning using Firefly Algorithm
    Tuba, Eva
    Mrkela, Lazar
    Tuba, Milan
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA 2016), 2016, : 413 - 418
  • [43] Novel linear search for support vector machine parameter selection
    Hong-xia Pang
    Wen-de Dong
    Zhi-hai Xu
    Hua-jun Feng
    Qi Li
    Yue-ting Chen
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 885 - 896
  • [44] Novel linear search for support vector machine parameter selection
    Hongxia PANG Wende DONG Zhihai XU Huajun FENG Qi LI Yueting CHEN State Key Laboratory of Optical Instrumentation Zhejiang University Hangzhou China
    Journal of Zhejiang University-Science C(Computers & Electronics), 2011, 12 (11) : 885 - 896
  • [45] Chaotic antlion algorithm for parameter optimization of support vector machine
    Alaa Tharwat
    Aboul Ella Hassanien
    Applied Intelligence, 2018, 48 : 670 - 686
  • [46] Novel linear search for support vector machine parameter selection
    Pang, Hong-xia
    Dong, Wen-de
    Xu, Zhi-hai
    Feng, Hua-jun
    Li, Qi
    Chen, Yue-ting
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (11): : 885 - 896
  • [47] Hyper-parameter Tuning for Quantum Support Vector Machine
    Demirtas, Fadime
    Tanyildizi, Erkan
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (04) : 47 - 54
  • [48] Chaotic antlion algorithm for parameter optimization of support vector machine
    Tharwat, Alaa
    Hassanien, Aboul Ella
    APPLIED INTELLIGENCE, 2018, 48 (03) : 670 - 686
  • [49] Support vector machine approach to drag coefficient estimation
    Ravikiran, N
    Ubaidulla, P
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1435 - 1438
  • [50] Component Outage Estimation based on Support Vector Machine
    Eskandarpour, Rozhin
    Khodaei, Amin
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,