Chaotic antlion algorithm for parameter optimization of support vector machine

被引:0
|
作者
Alaa Tharwat
Aboul Ella Hassanien
机构
[1] Frankfurt University of Applied Sciences,Faculty of Computer Science and Engineering
[2] Cairo University,Faculty of Computers and Information
[3] Scientific Research Group in Egypt,undefined
[4] (SRGE),undefined
来源
Applied Intelligence | 2018年 / 48卷
关键词
Optimization algorithms; Support vector machine (SVM); Chaotic maps; Classification; Parameter optimization; Ant lion optimizer (ALO);
D O I
暂无
中图分类号
学科分类号
摘要
Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.
引用
收藏
页码:670 / 686
页数:16
相关论文
共 50 条
  • [1] Chaotic antlion algorithm for parameter optimization of support vector machine
    Tharwat, Alaa
    Hassanien, Aboul Ella
    [J]. APPLIED INTELLIGENCE, 2018, 48 (03) : 670 - 686
  • [2] Parameter Selection of a Support Vector Machine, Based on a Chaotic Particle Swarm Optimization Algorithm
    Dong, Huang
    Jian, Gao
    [J]. CYBERNETICS AND INFORMATION TECHNOLOGIES, 2015, 15 (03) : 140 - 149
  • [3] Parameter Selection of Support Vector Machine based on Chaotic Particle Swarm Optimization Algorithm
    Peng, Jingming
    Wang, Shuzhou
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3271 - 3274
  • [4] A novel bacterial algorithm for parameter optimization of Support Vector Machine
    Jin, Qibing
    Chi, Meixuan
    Zhang, Yuming
    Wang, Hehe
    Zhang, Hengyu
    Cai, Wu
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3252 - 3257
  • [5] Parameter optimization of support vector machine based on ant colony optimization algorithm
    Zhang, Bei-Lin
    Qian, Lin-Fang
    Cao, Jian-Jun
    Ren, Guo-Quan
    [J]. Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2009, 33 (04): : 464 - 468
  • [6] A BA-based algorithm for parameter optimization of Support Vector Machine
    Tharwat, Alaa
    Hassanien, Aboul Ella
    Elnaghi, Basem E.
    [J]. PATTERN RECOGNITION LETTERS, 2017, 93 : 13 - 22
  • [7] Machine training and parameter settings with social emotional optimization algorithm for support vector machine
    Zhang, Yunqiang
    Zhang, Peilin
    [J]. PATTERN RECOGNITION LETTERS, 2015, 54 : 36 - 42
  • [8] Parameter Selection Algorithm for Support Vector Machine
    Wang, Shuzhou
    Meng, Bo
    [J]. 2011 2ND INTERNATIONAL CONFERENCE ON CHALLENGES IN ENVIRONMENTAL SCIENCE AND COMPUTER ENGINEERING (CESCE 2011), VOL 11, PT B, 2011, 11 : 538 - 544
  • [9] Parameter optimization of support vector machine for classification using niche genetic algorithm
    Zhu, Ning
    Feng, Zhi-Gang
    Wang, Qi
    [J]. Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2009, 33 (01): : 16 - 20
  • [10] A Chaotic Antlion Optimization Algorithm for Text Feature Selection
    Hongwei Chen
    Xun Zhou
    Dewei Shi
    [J]. International Journal of Computational Intelligence Systems, 15