Biophysical Parameter Estimation With a Semisupervised Support Vector Machine

被引:42
|
作者
Camps-Valls, Gustavo [1 ]
Munoz-Mari, Jordi [1 ]
Gomez-Chova, Luis [1 ]
Richter, Katja [2 ]
Calpe-Maravilla, Javier [1 ]
机构
[1] Univ Valencia, Escola Tecn Super Engn, Dept Elect Engn, E-46100 Valencia, Spain
[2] Univ Naples Federico II, Fac Agr, Dipartimento Ingn Agr & Agron Territorio, I-80055 Portici, Na, Italy
关键词
Biophysical parameter; estimation; graph; kernel method; regression; retrieval; semisupervised learning (SSL); support vector machine;
D O I
10.1109/LGRS.2008.2009077
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents two kernel-based methods for semisupervised regression. The methods rely on building a graph or hypergraph Laplacian with both the available labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). Given the high computational burden involved, we present two alternative formulations based on the Nystrom method and the incomplete Cholesky factorization to achieve operational processing times. The semisupervised SVR algorithms are successfully tested in multiplatform leaf area index estimation and oceanic chlorophyll concentration prediction. Experiments are carried out with both multispectral and hyperspectral data, demonstrating good generalization capabilities when a low number of labeled samples are available, which is usually the case in biophysical parameter retrieval.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 50 条
  • [31] QUANTUM SUPPORT VECTOR REGRESSION FOR BIOPHYSICAL VARIABLE ESTIMATION IN REMOTE SENSING
    Pasetto, Edoardo
    Delilbasic, Amer
    Cavallaro, Gabriele
    Willsch, Madita
    Melgani, Farid
    Riedel, Morris
    Michielsen, Kristel
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4903 - 4906
  • [32] Real-Time Parameter Estimation of a Nonlinear Vessel Steering Model Using a Support Vector Machine
    Xu, Haitong
    Hinostroza, M. A.
    Hassani, Vahid
    Soares, C. Guedes
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (06):
  • [33] REAL-TIME PARAMETER ESTIMATION OF NONLINEAR VESSEL STEERING MODEL USING SUPPORT VECTOR MACHINE
    Xu, Haitong
    Hassani, Vahid
    Hinostroza, M. A.
    Guedes Soares, C.
    PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 11B, 2018,
  • [34] Cumulative Absolute Velocity (CAV) parameter estimation in earthquake emergency response based on a support vector machine
    Liu, Heyi
    Sun, Wentao
    Li, Shanyou
    Zhou, Xueying
    Song, Jindong
    JOURNAL OF SEISMOLOGY, 2024, 28 (03) : 811 - 828
  • [35] Parameter investigation of support vector machine classifier with kernel functions
    Tharwat, Alaa
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (03) : 1269 - 1302
  • [36] Nesting Genetic Algorithms for Parameter Optimization of Support Vector Machine
    Liao, Pin
    Fu, Yang
    Zhang, Xin
    Li, Kunlun
    Wang, Mingyan
    Wang, Sensen
    Zhang, Xingqiang
    INTERNATIONAL ACADEMIC CONFERENCE ON THE INFORMATION SCIENCE AND COMMUNICATION ENGINEERING (ISCE 2014), 2014, : 259 - 264
  • [37] Parameter investigation of support vector machine classifier with kernel functions
    Alaa Tharwat
    Knowledge and Information Systems, 2019, 61 : 1269 - 1302
  • [38] A novel bacterial algorithm for parameter optimization of Support Vector Machine
    Jin, Qibing
    Chi, Meixuan
    Zhang, Yuming
    Wang, Hehe
    Zhang, Hengyu
    Cai, Wu
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3252 - 3257
  • [39] An efficient method for tuning kernel parameter of the support vector machine
    Debnath, R
    Takahashi, H
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 1023 - 1028
  • [40] Automated parameter selection for support vector machine decision tree
    Choi, Gyunghyun
    Bae, Suk Joo
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 746 - 753