Predicting effects of noncoding variants with deep learning-based sequence model

被引:25
|
作者
Zhou, Jian [1 ,2 ]
Troyanskaya, Olga G. [1 ,3 ,4 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Princeton Univ, Grad Program Quantitat & Computat Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Simons Fdn, Simons Ctr Data Anal, New York, NY USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
REGULATORY VARIANTS; FRAMEWORK;
D O I
10.1038/NMETH.3547
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.
引用
收藏
页码:931 / 934
页数:4
相关论文
共 50 条
  • [1] Predicting effects of noncoding variants with deep learning–based sequence model
    Jian Zhou
    Olga G Troyanskaya
    [J]. Nature Methods, 2015, 12 : 931 - 934
  • [2] Cell type-specific interpretation of noncoding variants using deep learning-based methods
    Sindeeva, Maria
    Chekanov, Nikolay
    Avetisian, Manvel
    Shashkova, Tatiana I.
    Baranov, Nikita
    Malkin, Elian
    Lapin, Alexander
    Kardymon, Olga
    Fishman, Veniamin
    [J]. GIGASCIENCE, 2023, 12
  • [3] Predicting the effects of regulatory variants by deep learning
    Schubach, M.
    Kruetzfeldt, L.
    Roener, S.
    Kircher, M.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 756 - 756
  • [4] Deep learning-based diagnostic model for predicting complications after gastrectomy
    Fukuyo, Ryosuke
    Tokunaga, Masanori
    Umebayashi, Yuya
    Saito, Toshifumi
    Okuno, Keisuke
    Sato, Yuya
    Saito, Katsumasa
    Fujiwara, Naoto
    Kinugasa, Yusuke
    [J]. ASIAN JOURNAL OF ENDOSCOPIC SURGERY, 2023, 16 (02) : 210 - 217
  • [5] Predicting GPR40 Agonists with A Deep Learning-Based Ensemble Model
    Yang, Jiamin
    Jiang, Chen
    Chen, Jing
    Qin, Lu-Ping
    Cheng, Gang
    [J]. CHEMISTRYOPEN, 2023, 12 (11)
  • [6] Development and validation of a deep learning-based model for predicting burnup nuclide density
    Lei, Jichong
    Yang, Chao
    Ren, Changan
    Li, Wei
    Liu, Chengwei
    Sun, Aikou
    Li, Yukun
    Chen, Zhenping
    Yu, Tao
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21257 - 21265
  • [7] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    [J]. CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [8] Deep Learning-Based Decoding for Constrained Sequence Codes
    Cao, Congzhe
    Li, Duanshun
    Fair, Ivan
    [J]. 2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [9] Deep Learning-Based Decoding of Constrained Sequence Codes
    Cao, Congzhe
    Li, Duanshun
    Fair, Ivan
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (11) : 2532 - 2543
  • [10] Deep Learning-based Sequence Labeling Tools for Nepali
    Rai, Pooja
    Chatterji, Sanjay
    Kim, Byung-Gyu
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (08)