Predicting the effects of regulatory variants by deep learning

被引:0
|
作者
Schubach, M. [1 ,2 ]
Kruetzfeldt, L. [1 ,2 ]
Roener, S. [1 ,2 ]
Kircher, M. [1 ,2 ]
机构
[1] Charite Univ Med Berlin, Berlin, Germany
[2] Berlin Inst Hlth BIH, Berlin, Germany
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P20.66.C
引用
收藏
页码:756 / 756
页数:1
相关论文
共 50 条
  • [1] Predicting effects of noncoding variants with deep learning–based sequence model
    Jian Zhou
    Olga G Troyanskaya
    [J]. Nature Methods, 2015, 12 : 931 - 934
  • [2] Predicting effects of noncoding variants with deep learning-based sequence model
    Zhou, Jian
    Troyanskaya, Olga G.
    [J]. NATURE METHODS, 2015, 12 (10) : 931 - 934
  • [3] Functional analysis of BRCA regulatory variants with deep learning models
    Troyanskaya, Olga
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [4] WEVar: a novel statistical learning framework for predicting noncoding regulatory variants
    Wang, Ye
    Jiang, Yuchao
    Yao, Bing
    Huang, Kun
    Liu, Yunlong
    Wang, Yue
    Qin, Xiao
    Saykin, Andrew J.
    Chen, Li
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants
    Zhao, Hu
    Tu, Zhuo
    Liu, Yinmeng
    Zong, Zhanxiang
    Li, Jiacheng
    Liu, Hao
    Xiong, Feng
    Zhan, Jinling
    Hu, Xuehai
    Xie, Weibo
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) : W523 - W529
  • [6] Deep learning of regulatory regions discovers enhancer variants implicated in PAH
    Tilly, T.
    Auckland, K.
    Nibhani, R.
    Martin, J.
    Nihr, N.
    Morrell, N. W.
    Lio', P.
    Graf, S.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [7] Transfer Learning for Predicting Gene Regulatory Effects of Chemicals
    Maral, Bahattin Can
    Tan, Mehmet
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART II, 2022, 647 : 414 - 425
  • [8] Predicting regulatory variants with composite statistic
    Li, Mulin Jun
    Pan, Zhicheng
    Liu, Zipeng
    Wu, Jiexing
    Wang, Panwen
    Zhu, Yun
    Xu, Feng
    Xia, Zhengyuan
    Sham, Pak Chung
    Kocher, Jean-Pierre A.
    Li, Miaoxin
    Liu, Jun S.
    Wang, Junwen
    [J]. BIOINFORMATICS, 2016, 32 (18) : 2729 - 2736
  • [9] Regulatory variants: from detection to predicting impact
    Rojano, Elena
    Seoane, Pedro
    Ranea, Juan A. G.
    Perkins, James R.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (05) : 1639 - 1654
  • [10] MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
    Chengqi Wang
    Yibo Dong
    Chang Li
    Jenna Oberstaller
    Min Zhang
    Justin Gibbons
    Camilla Valente Pires
    Mianli Xiao
    Lei Zhu
    Rays H. Y. Jiang
    Kami Kim
    Jun Miao
    Thomas D. Otto
    Liwang Cui
    John H. Adams
    Xiaoming Liu
    [J]. Genome Biology, 24