Predicting effects of noncoding variants with deep learning-based sequence model

被引:25
|
作者
Zhou, Jian [1 ,2 ]
Troyanskaya, Olga G. [1 ,3 ,4 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Princeton Univ, Grad Program Quantitat & Computat Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Simons Fdn, Simons Ctr Data Anal, New York, NY USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
REGULATORY VARIANTS; FRAMEWORK;
D O I
10.1038/NMETH.3547
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.
引用
收藏
页码:931 / 934
页数:4
相关论文
共 50 条
  • [31] A deep learning-based approach for predicting COVID-19 diagnosis
    Munshi, Raafat M.
    Khayyat, Mashael M.
    Ben Slama, Sami
    Khayyat, Manal Mahmoud
    [J]. HELIYON, 2024, 10 (07)
  • [32] A Deep Learning-Based Mobile Crowdsensing Scheme by Predicting Vehicle Mobility
    Zhu, Xiaoyu
    Luo, Yueyi
    Liu, Anfeng
    Tang, Wenjuan
    Bhuiyan, Md. Zakirul Alam
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4648 - 4659
  • [33] miTAR: a hybrid deep learning-based approach for predicting miRNA targets
    Gu, Tongjun
    Zhao, Xiwu
    Barbazuk, William Bradley
    Lee, Ji-Hyun
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [34] A Deep Learning-Based Password Security Evaluation Model
    Hong, Ki Hyeon
    Lee, Byung Mun
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [35] Deep Learning-Based Model for Financial Distress Prediction
    Elhoseny, Mohamed
    Metawa, Noura
    Sztano, Gabor
    El-hasnony, Ibrahim M.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2022,
  • [36] HistoNet: A Deep Learning-Based Model of Normal Histology
    Hoefling, Holger
    Sing, Tobias
    Hossainl, Imtiaz
    Boisclair, Julie
    Doelemeyer, Arno
    Flandre, Thierry
    Piaia, Alessandro
    Romanet, Vincent
    Santarossa, Gianluca
    Saravanan, Chandrassegar
    Sutter, Esther
    Turner, Oliver
    Wuersch, Kuno
    Moulin, Pierre
    [J]. TOXICOLOGIC PATHOLOGY, 2021, 49 (04) : 784 - 797
  • [37] miTAR: a hybrid deep learning-based approach for predicting miRNA targets
    Tongjun Gu
    Xiwu Zhao
    William Bradley Barbazuk
    Ji-Hyun Lee
    [J]. BMC Bioinformatics, 22
  • [38] Multimodal deep learning-based diagnostic model for BPPV
    Lu, Hang
    Mao, Yuxing
    Li, Jinsen
    Zhu, Lin
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [39] BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone
    Yang, Bite
    Liu, Feng
    Ren, Chao
    Ouyang, Zhangyi
    Xie, Ziwei
    Bo, Xiaochen
    Shu, Wenjie
    [J]. BIOINFORMATICS, 2017, 33 (13) : 1930 - 1936
  • [40] A Deep Learning-Based Model for Date Fruit Classification
    Albarrak, Khalied
    Gulzar, Yonis
    Hamid, Yasir
    Mehmood, Abid
    Soomro, Arjumand Bano
    [J]. SUSTAINABILITY, 2022, 14 (10)